Zirconium Titanate: Synthesis and Processing of Fine Powders Prepared by Chemical Route

Author(s):  
Valter Ussui ◽  
Dolores R.R. Lazar ◽  
Nelson Batista de Lima ◽  
A.H.A. Bressiani ◽  
José Octavio A. Pascoal
2006 ◽  
Vol 530-531 ◽  
pp. 683-688 ◽  
Author(s):  
Valter Ussui ◽  
Dolores Ribeiro Ricci Lazar ◽  
Nelson Batista de Lima ◽  
Ana Helena A. Bressiani ◽  
José Octavio A. Pascoal

A process for synthesis of fine zirconium titanate powders by chemical route is described. Zirconium/titanium molar ratio was varied from 0.67 to 1.5 and the powders produced were analyzed. The precipitation process comprises the mixture of zirconium and titanium metal salt solutions to ammonium hydroxide solution, followed by washing of the precipitate, calcination and grinding to result in zirconium titanate. The ceramic powder is then uniaxially pressed as cylindrical samples and sintered at 1400°C for 5 hours. The microstructure of fractured and thermally etched ceramic was observed by scanning electron microscopy, and crystal phase identifications were done by X-ray diffraction. At least two different zirconium titanate phases, ZrTiO4 and Zr5Ti7O24, were identified. Ceramic hardness was measured by Vickers indentation.


MRS Bulletin ◽  
2000 ◽  
Vol 25 (9) ◽  
pp. 27-31 ◽  
Author(s):  
Masato Kakihana ◽  
Kazunari Domen

Fine powders of semiconducting oxides loaded with deposited metal and/or metaloxide particles have been widely used as heterogeneous photocatalysts for innumerable chemical reactions. Among the many photocatalytic reactions, the splitting of water assisted by light has become one of the most active areas in heterogeneous photocatalysis, since it can be a promising chemical route for energy renewal and energy storage. The photocatalytic splitting of water on TiO2 electrodes, discovered by Fujishima and Honda in 1972, is a prototypic example of this technique, and there is a vast body of literature describing the potential application of TiO2-based photocatalysts for water decomposition. This has brought about a burst of research related to the development of many other photocatalytic systems.


2011 ◽  
Vol 119 (1395) ◽  
pp. 894-897 ◽  
Author(s):  
Teruki MOTOHASHI ◽  
Taku UEDA ◽  
Yuji MASUBUCHI ◽  
Shinichi KIKKAWA

Author(s):  
Pratibha L. Gai ◽  
M. A. Saltzberg ◽  
L.G. Hanna ◽  
S.C. Winchester

Silica based ceramics are some of the most fundamental in crystal chemistry. The cristobalite form of silica has two modifications, α (low temperature, tetragonal form) and β (high temperature, cubic form). This paper describes our structural studies of unusual chemically stabilized cristobalite (CSC) material, a room temperature silica-based ceramic containing small amounts of dopants, prepared by a wet chemical route. It displays many of the structural charatcteristics of the high temperature β-cristobalite (∼270°C), but does not undergo phase inversion to α-cristobalite upon cooling. The Structure of α-cristobalite is well established, but that of β is not yet fully understood.Compositions with varying Ca/Al ratio and substitutions in cristobalite were prepared in the series, CaO:Al2O3:SiO2 : 3-x: x : 40, with x= 0-3. For CSC, a clear sol was prepared from Du Pont colloidal silica, Ludox AS-40®, aluminium nitrate nonahydrate, and calcium nitrate hexahydrate in proportions to form a final composition 1:2:40 composition.


2019 ◽  
Vol 9 (3) ◽  
pp. 362-370 ◽  
Author(s):  
D. Vaya ◽  
Meena ◽  
B.K. Das

Background: The properties of the material are altered when material size shifted towards nano-regime. This feature could be used for wastewater treatment process using model pollutant such as dyes. Recently, nanoparticles are synthesized by a green chemical route using different capping agents. This is the reason we adopt starch as green capping agent along with sol-gel method. Objective: To synthesize cobalt oxide nanoparticles by green chemical route and utilized it in degradation of dyes. Methods: Synthesis of cobalt oxide nanoparticles by sol-gel method using starch as a capping agent. The characteristics of surface modifications were investigated by UV-VIS, TEM, SEM, XRD and FTIR techniques. Results: Cobalt oxide nanoparticles synthesized and inhibited photocatalytic activity. Conclusion: Deactivation of photocatalytic activity due to complex nature of starch. This property can be used elsewhere as in light shielding applications to coat and protect surfaces in order to keep them cool and safe from damage as in the painting of vehicles, roofs, buildings, water tanks, etc.


2021 ◽  
Vol 4 (4) ◽  
pp. 3748-3756
Author(s):  
Christopher J. Perez ◽  
Zhijie Chen ◽  
Willie B. Beeson ◽  
Sevan Chanakian ◽  
Kai Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document