Analysis of Hydrogen Diffusion in Notched High-Strength Steel Wires

Author(s):  
Lin Bing
2007 ◽  
Vol 340-341 ◽  
pp. 1339-1344
Author(s):  
Lin Bing

Fick's laws were used to model the hydrogen diffusion in notched high-strength steel wires loaded in tension under elastic-plastic conditions. The plastic deformation at the notch tip has an effect on the peak distribution of the hydrostatic stress ( h σ ). So, in stress-assisted diffusion analysis, elastic-plastic material behavior should be considered. Coupled diffusion elastic-plastic finite element analysis was implemented in the finite element program ABAQUS using the user element subroutine (UEL) and the coupled temperature-displacement solver routine to solve the variational form of the diffusion equation in order to obtain the hydrogen concentration distribution ahead of the notch tip in high-strength steel wires under plane strain conditions. The analysis results are compared with those obtained from elastic analysis, which shows that, if a critical hydrogen concentration is regarded as a local fracture criterion, the elastic-plastic analysis results can be used to evaluate the hydrogen embrittlement of high-strength steel wires.


Author(s):  
Jumari A. Robinson ◽  
Adrian Brügger ◽  
Raimondo Betti

<p>The performance of suspension bridges exposed to fire hazards is severely under-studied – so much so that no experimental data exists to quantify the safety of a suspension bridge during or after a major fire event. Bridge performance and safety rely on the integrity of the main cable and its constituent high-strength steel wires. Due to the current lack of experimental high temperature data for wires, the theoretical models use properties and coefficients from data for other types of structural steel. No other structural steel undergoes the amount of cold-working that bridge wire does, and plastic strains from cold-working can be relieved at high temperature, drastically weakening the steel. As such, this work determines the elastic modulus, ultimate strength, and general thermo-mechanical profile of the high-strength steel wires in a range of elevated temperature environments. Specifically, these tests are conducted on a bundle of 61-wires (transient), and at the single wire level (steady-state) at a temperature range of approximately 20-700°C. The test results show an alarmingly high reduction in the elastic modulus and ultimate strength with increased temperature. The degradation shown by experiments is higher than predicted by current theoretical models, indicating that use of high-temperature properties of other types of steel is not sufficient. The test results also show scaling agreement between the single wire and the 61-wire bundle, implying that a full material work up at the single- wire level will accurately inform the failure characterization of the full cable.</p>


Sign in / Sign up

Export Citation Format

Share Document