A General Model to Chemo-Mechanical Equilibrium of a Geo-Synthetic Polymeric Membrane

Author(s):  
Michele Buonsanti
2007 ◽  
Vol 345-346 ◽  
pp. 1031-1034
Author(s):  
Michele Buonsanti

The interaction between two or more independent causes of materials degradation results in a duplex mode of materials degradation. The materials degradation rate whether expressed in loss of material or loss of mechanical strength is often faster than the sum of each form of materials degradation acting separately. For this reason, duplex modes of materials degradation are of great practical importance. Synergisms between unrelated forms of materials degradation are not immediately obvious and have in some instances been only recently recognized. In this paper a chemically aggressive environment over a geo-synthetic polymeric membrane is investigated. The membrane free energy depends upon the mono-axial strain and the degree of reaction with an external agent. We suppose chemical potential assigned and the minimization problem is formulated. Practically the minimum problem is non-convex, and coexistence of equilibrium phases is possible. The proposed general model is able to describe the complex phenomenon when polymeric geo-synthetic membrane are undergoing to heterogeneous and complex action of the package system built in dump of urban waste. Finally a FEM simulation is compared with minimization problem theoretical results.


2006 ◽  
Author(s):  
Otmar E. Varela ◽  
Elvira Salgado ◽  
Virginia Lazio

Author(s):  
A. M. Oleynikov ◽  
L. N. Kanov

The paper gives the description of the original wind electrical installation with mechanical reduction in which the output of vertical axis wind turbine with rather low rotation speed over multiplicator is distributed to a certain number of generators. The number of acting generators is determined by the output of actual operating wind stream at each moment. According to this constructive scheme, it is possible to provide effective and with maximum efficiency installation work in a wide range of wind speeds and under any schedule issued to the consumer of electricity. As there are no any experience in using such complexes, mathematical description of its main elements is given, namely windwheels, generators with electromagnetic excitation of magnetic electrical type, then their interaction with windwheel, and also the results of mathematical modeling of work system regimes under using the offered system of equations. The basis for the mathematical description of the main elements of the installation – synchronous generators – are the system of equations of electrical and mechanical equilibrium in relative units in rotating coordinates without considering saturation of the magnetic circuit. The equation of mechanical equilibrium systems includes torque and brake windwheel electromagnetic moments of generators with taking into account the reduction coefficients and friction. In addition, we specify the alternator rotor dynamics resulting from continuous torque of windwheel fluctuations under the influence of unsteady wind flow and wind speed serving as the original variable is modeled by a set of sinusoids. Model simplification is achieved by equivalization of similar generators and by disregarding these transitions with a small time constant. Calculation the installation with synchronous generators of two types of small and medium capacity taking into account the operational factors allowed us to demonstrate the logic of interactions in the main elements of the reported complex in the process of converting wind flow into the generated active and reactive power. We have shown the possibility of stable system work under changeable wind stream condition by regulating of the plant blade angle and with simultaneous varying of generator number of different types. All these are in great interest for project organizations and power producers.


Author(s):  
Edgar Ofuchi ◽  
Ana Leticia Lima Santos ◽  
Thiago Sirino ◽  
Henrique Stel ◽  
Rigoberto Morales

Author(s):  
Y. Madhusudan Rao ◽  
Katakam V V ◽  
S Reddy ◽  
J M Somagoni ◽  
P K Panakanti ◽  
...  

The aim of this study was to prepare mini tablets to be filled into a capsule that is designed to float on the gastric contents based on gas formation technique. The drug-containing core mini-tablets were prepared by wet granulation method followed by a coating of the core units with seal coating, an effervescent layer and a gas-entrapping polymeric membrane (Eudragit RS30D, RL30D). Dipyridamole, which is predominantly absorbed in the upper part of GI tract and unabsorbed/insoluble at the lower intestine, was used as a model drug. The effect of the preparative parameters like amount of the effervescent agent layered onto the seal coated units, type and coating level of the gas-entrapping polymeric membrane, floating ability and drug release properties of the multiple-unit FDDS were evaluated. The formulations were evaluated for pharmacopoeial quality control tests. Physical parameters were found to be within the acceptable limits. The system using Eudragit® RL30D as a gas-entrapping polymeric membrane exhibited floating properties. The time to float decreased as amount of the effervescent agent increased and coating level of gas-entrapping polymeric membrane decreased. The optimum system exhibited complete floating within 3 minutes and maintained that buoyancy over a period of 8 hours. The drug release was sustained and linear with the square root of time. Increasing the coating level of the gas-entrapping polymeric membrane decreased drug release. Both the rapid-floating and sustained-release properties were achieved in the multiple-unit floating delivery system developed in this study. The in vivo gastric residence time was examined by radiograms and it was found that the units remained in the stomach for about 6 hours. The analysis of the dissolution data after storage at 40°C and 75% RH for 6 months showed no significant change indicating good stability.


Sign in / Sign up

Export Citation Format

Share Document