A New Model of Stochastic Crack Growth under Random Loading and Reliability Analysis of Fatigue Life

Author(s):  
Hong Zhong Huang ◽  
G. Huang ◽  
Qiang Miao ◽  
Dan Ling ◽  
Q. Ma
2007 ◽  
Vol 353-358 ◽  
pp. 81-84
Author(s):  
Hong Zhong Huang ◽  
G. Huang ◽  
Qiang Miao ◽  
Dan Ling ◽  
Q. Ma

A new model is proposed for the analysis of fatigue crack growth under random loading. The fatigue rule of crack length is transformed into the monotony function rule based on types of the crack. By performing reliability analysis, the randomness of the stress, the stochastic nature of the crack growth, the fuzziness of the initial crack size and the randomness of the crack critical size are considered. The First-order-second-moment approximation method is used to obtain the solution of the probability density function. An example is given to illustrate feasibility of the proposed method.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 397
Author(s):  
Yahya Ali Fageehi

This paper presents computational modeling of a crack growth path under mixed-mode loadings in linear elastic materials and investigates the influence of a hole on both fatigue crack propagation and fatigue life when subjected to constant amplitude loading conditions. Though the crack propagation is inevitable, the simulation specified the crack propagation path such that the critical structure domain was not exceeded. ANSYS Mechanical APDL 19.2 was introduced with the aid of a new feature in ANSYS: Smart Crack growth technology. It predicts the propagation direction and subsequent fatigue life for structural components using the extended finite element method (XFEM). The Paris law model was used to evaluate the mixed-mode fatigue life for both a modified four-point bending beam and a cracked plate with three holes under the linear elastic fracture mechanics (LEFM) assumption. Precise estimates of the stress intensity factors (SIFs), the trajectory of crack growth, and the fatigue life by an incremental crack propagation analysis were recorded. The findings of this analysis are confirmed in published works in terms of crack propagation trajectories under mixed-mode loading conditions.


1972 ◽  
Vol 7 (2) ◽  
pp. 132-140 ◽  
Author(s):  
P B Lindley

The determination of tearing energy, i.e. the energy available for crack growth, is an essential prerequisite for the estimation of the fatigue life of rubber components. Three methods of determining tearing energy are considered: from changes in total energy, from crack surface displacements, and by comparison with known values for the same crack growth rates. It is shown by applying experimental and numerical techniques to plane-stress testpieces, not necessarily of uniform stress or thickness, that the methods are satisfactory.


Sign in / Sign up

Export Citation Format

Share Document