Fe-Metalloid Metallic Glasses with High Magnetic Flux Density and High Glass-Forming Ability

2007 ◽  
pp. 1361-1366
Author(s):  
Akihiro Makino ◽  
Takeshi Kubota ◽  
Masahiro Makabe ◽  
Chun Tao Chang ◽  
Akihisa Inoue
2007 ◽  
Vol 561-565 ◽  
pp. 1361-1366 ◽  
Author(s):  
Akihiro Makino ◽  
Takeshi Kubota ◽  
Masahiro Makabe ◽  
Chun Tao Chang ◽  
Akihisa Inoue

Fe-based bulk metallic glasses with good soft magnetic softness, high strength and relatively low material cost should have greatest potential for wide variety of applications among many kinds of bulk metallic glasses (BMGs). However, the glass-forming metal elements such as Al, Ga, Nb, Mo and so forth in the Fe-based BMGs significantly decrease saturation magnetization (Js) which is a essential property as soft magnetic materials. Since the coexistence of high Js and high glass-forming ability (GFA) has been earnestly desired from academia to industry, however, has been left unrealized over many years. Here, we present a Fe76Si9B10P5 bulk glassy alloy exhibiting with unusual combination of high Js of 1.51 T comparable to the Fe-Si-B amorphous alloy ribbons with thickness of about 25 μm in now practical use, because of not-containing the glass-forming metal elements, and high GFA leading to a rod with a diameter of 2.5 mm. This alloy composed of familiar and low-priced elements also has extremely low coercivity which should enable ultra-high efficient transformers, therefore, has a great advantage for engineering and industry, and thus significantly improves energy saving, conservation of earth resources and environment.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2522
Author(s):  
Guangdou Liu ◽  
Shiqin Hou ◽  
Xingping Xu ◽  
Wensheng Xiao

In the linear and planar motors, the 1D Halbach magnet array is extensively used. The sinusoidal property of the magnetic field deteriorates by analyzing the magnetic field at a small air gap. Therefore, a new 1D Halbach magnet array is proposed, in which the permanent magnet with a curved surface is applied. Based on the superposition of principle and Fourier series, the magnetic flux density distribution is derived. The optimized curved surface is obtained and fitted by a polynomial. The sinusoidal magnetic field is verified by comparing it with the magnetic flux density of the finite element model. Through the analysis of different dimensions of the permanent magnet array, the optimization result has good applicability. The force ripple can be significantly reduced by the new magnet array. The effect on the mass and air gap is investigated compared with a conventional magnet array with rectangular permanent magnets. In conclusion, the new magnet array design has the scalability to be extended to various sizes of motor and is especially suitable for small air gap applications.


Sign in / Sign up

Export Citation Format

Share Document