Microstructure and Mechanical Properties of Dual Multi-Phase Intermetallic Alloys Composed of Geometrically Close Packed Ni3X Structures

2007 ◽  
pp. 375-378
Author(s):  
Takayuki Takasugi ◽  
Yasuyuki Kaneno
2015 ◽  
Vol 1760 ◽  
Author(s):  
Yuki Hamada ◽  
Yasuyuki Kaneno ◽  
Hiroshi Numakura ◽  
Takayuki Takasugi

ABSTRACTThe effect of Si addition on microstructure and mechanical properties of dual two-phase intermetallic alloys was investigated. Si was added to the base alloy composition Ni75Al9V13Nb3 + 50 wt. ppm B by three substitution ways in which Si was substituted either for Ni, for Al and for V, respectively. The alloys added with 1 at.% Si showed a dual two-phase microstructure composed of Ni3Al (L12) and Ni3V (D022) phases, while the alloys added with over 2 at.% Si exhibited the same dual two-phase microstructure but contained third phases. The third phases were G phase (Ni16Si7Nb6) and A2 phase (the bcc solid solution consisting of Nb and V). Yield and tensile strength of the 1 at.% Si-added alloys were high in the alloy in which Si was substituted for Al but low in the alloys in which Si was substituted for Ni or for V, in comparison with those of the base alloy. Tensile elongation was lower than that of the base alloy irrespective of substitution ways. The density of the Si added alloys was close to or slightly lower than that of the base alloy. Oxidation resistance of the Si added alloy was increased. Si addition to the dual two-phase intermetallic alloys is beneficial for reducing the density and enhancing the oxidation resistance without a harmful reduction of strength properties.


2007 ◽  
Vol 561-565 ◽  
pp. 375-378
Author(s):  
Takayuki Takasugi ◽  
Yasuyuki Kaneno

Dual two-phase intermetallic alloys composed of geometrically close packed (GCP) structures of Ni3Al(L12) and Ni3V(D022) containing Nb were investigated in terms of the microstructural evolution during low temperature annealing (aging) and the related mechanical properties. The eutectoid region, i.e. the prior Al phase (Ni solid solution) is composed of the lamellar-like structure consisting of Ni3Al(L12) and Ni3V(D022) phases. The lamellar-like structure tended to align along <001> direction and on {001} plane in the prior A1 phase (or the L12 phase). In a wide range of temperature, the dual two-phase intermetallic alloys showed high yield and tensile strength, and also reasonable tensile ductility, accompanied with ductile fracture mode.


2015 ◽  
Vol 1760 ◽  
Author(s):  
Daisuke Edatsugi ◽  
Yasuyuki Kaneno ◽  
Hiroshi Numakura ◽  
Takayuki Takasugi

ABSTRACTThe effect of W addition on microstructure and mechanical properties of Ni3Al (L12) and Ni3V (D022) two-phase intermetallic alloys has been investigated. W was added to the base alloy composition, Ni75Al10V12Nb3 (at. %) in place of either Ni, Al or V. The W-added alloy ingots were heat-treated in vacuum at 1575 K for 5 h. The majority of W-added alloys showed a dual two-phase microstructures while the alloy in which 3 at. % W substituted for Ni exhibited the dual two-phase microstructure containing W solid solution dispersions. Vickers hardness was significantly enhanced by W addition, which is primarily due to solid-solution strengthening.


2006 ◽  
Vol 980 ◽  
Author(s):  
Masayoshi Fujita ◽  
Yasuyuki Kaneno ◽  
Takayuki Takasugi

AbstractUsing alloys whose initial microstructures are composed of Ni3Si(L12), Ni3Si(L12)+Ni3Ti(D024) and Ni3Si(L12)+Ni3Nb(D0a), aging phenomenon and the associated high-temperature tensile property were investigated. It was shown by micro hardness measurement that age hardening behavior due to the precipitation of the Ni3Ti(D024) phase occurs in all alloys at temperatures above 823K. It was however shown by tensile test that the precipitated Ni3Ti(D024) phase is not so much effective in improving the mechanical properties of alloys whose initial microstructures are composed of Ni3Si(L12)+Ni3Nb(D0a) or Ni3Si(L12)+Ni3Ti (D024). In alloys whose initial microstructures are composed of Ni3Si(L12)+Ni3Nb (D0a), a good combination of tensile strength and tensile elongation was found over a wide of test temperature whether or not they contain the precipitated Ni3Ti(D024) phase.


Sign in / Sign up

Export Citation Format

Share Document