The Effect of Alloying Cu on Pitting Corrosion Resistance of Copper-Bearing Ferritic Stainless Steel

Author(s):  
Wei Zhang ◽  
De Ning Zou ◽  
Hong Hong Yao ◽  
Jun Yang
2008 ◽  
Vol 569 ◽  
pp. 197-200 ◽  
Author(s):  
Wei Zhang ◽  
De Ning Zou ◽  
Hong Hong Yao ◽  
Jun Yang

Copper is a well-known alloying element which is used to improve the resistance to general corrosion of stainless steels. Our previous experiments show that the increase of copper content can acquire the excellent antibacterial properties and can also increase the tendency to cold formability of the ferritic stainless steels. However, the effect of alloying Cu on the resistance to localized corrosion has not been clarified sufficiently. In order to understand the effect of copper on pitting corrosion resistance of the ferritic antibacterial stainless steel, the electrochemical experiments were carried out and the anodic polarization curves were performed in 3.5% NaCl solution for two kinds of steels. The results reveal that the ε-Cu phase in ferrite matrix diminishes pitting corrosion resistance of the antibacterial stainless steel in the chlorides medium. It is connected with the poor passive behavior of the ε-Cu phase inclusions.


2011 ◽  
Vol 217-218 ◽  
pp. 1180-1184 ◽  
Author(s):  
Hua Bing Li ◽  
Zhou Hua Jiang ◽  
Qi Feng Ma ◽  
Zhen Li

The influence of cold working and grain size on the pitting corrosion resistance of Fe-Cr-Nb-Mo ferritic stainless steel is investigated using optical microscope and electrochemical methods. The pitting corrosion resistance firstly decreases with increasing the cold-rolling reduction from 0% to 30% due to the number of nucleation site increasing. With increasing the cold-rolling reduction from 40% to 60%, the disappearance of grain boundaries, stacked dislocation and uniform microstructure results in the pitting corrosion resistance of the steel. With prolonging the annealing time, the grain size of the steel grows, and the pitting potential of the steel decrease. The smaller grain size promotes the formation of compact passive film and improves the pitting corrosion resistance.


CORROSION ◽  
2006 ◽  
Vol 62 (11) ◽  
pp. 1039-1046 ◽  
Author(s):  
A. S. M. Paroni ◽  
N. Alonso-Falleiros ◽  
R. Magnabosco

Sign in / Sign up

Export Citation Format

Share Document