cold rolling reduction
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 22)

H-INDEX

9
(FIVE YEARS 3)

Author(s):  
T. W. J. Kwok ◽  
P. Gong ◽  
X. Xu ◽  
J. Nutter ◽  
W. M. Rainforth ◽  
...  

AbstractA novel medium manganese steel with composition Fe–8.3Mn–3.8Al–1.8Si–0.5C–0.06V–0.05Sn was developed and thermomechanically processed through hot rolling and intercritical annealing. The steel possessed a yield strength of 1 GPa, tensile strength of 1.13 GPa and ductility of 41 pct. In order to study the effect of cold rolling after intercritical annealing on subsequent tensile properties, the steel was further cold rolled up to 20 pct reduction. After cold rolling, it was observed that the strain hardening rate increased continuously with increasing cold rolling reduction but without a significant drop in ductility during subsequent tensile tests. The microstructural evolution with cold rolling reduction was analysed to understand the mechanisms behind this phenomena. It was found that cold rolling activated additional twinning systems which provided a large number of potent nucleation sites for strain induced martensite to form during subsequent tensile tests in what can be described as an enhanced TRIP effect.


2021 ◽  
Vol 902 ◽  
pp. 35-41
Author(s):  
Adam Otabil ◽  
Mohamed El-Hofy ◽  
Mohamed Abdel Hady Gepreel

In this paper, a new metastable Titanium alloy in the Ti-Nb-Ta-Mo system has been successfully produced using both the d-electron and Moeq concept. The influence of cold rolling on the microstructure and hardness was investigated. The alloy was fabricated by arc melting, cold rolled up to 90% reduction in thickness and characterized using X-ray diffraction (XRD), optical microscope and Vickers microhardness. The XRD peaks depicted both β and α′′ phases in all the cold rolled specimens. The hardness of the alloy increased with increasing cold rolling reduction thickness. An excellent plasticity (≥ 65%) and compressive strength up to (2.9 GPa) was achieved with low Young’s modulus (31 GPa) and no failure or crack on the alloy. Also, the alloy demonstrated a high compressive true strength coefficient (k ≈1426 MPa) along with improved strain hardening index (n ≈ 0.41). Based on the XRD, optical microscope and microhardness indentation micrographs, the deformation mechanism of Ti-13Nb-1.5Ta-3Mo was found to be a combination of stress induced transformation, mechanical twinning and slipping.


Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1487
Author(s):  
Jing Zhang ◽  
Kook Noh Yoon ◽  
Min Seok Kim ◽  
Heh Sang Ahn ◽  
Ji Young Kim ◽  
...  

Herein, we carefully investigate the effect of nitrogen doping in the equiatomic CoCrFeMnNi high-entropy alloy (HEA) on the microstructure evolution and mechanical properties. After homogenization (1100 °C for 20 h), cold-rolling (reduction ratio of 60%) and subsequent annealing (800 °C for 1 h), a unique complex heterogeneous microstructure consisting of fine recrystallized grains, large non-recrystallized grains, and nanoscale Cr2N precipitates, were obtained in nitrogen-doped (0.3 wt.%) CoCrFeMnNi HEA. The yield strength and ultimate tensile strength can be significantly improved in nitrogen-doped (0.3 wt.%) CoCrFeMnNi HEA with a complex heterogeneous microstructure, which shows more than two times higher than those compared to CoCrFeMnNi HEA under the identical process condition. It is achieved by the simultaneous operation of various strengthening mechanisms from the complex heterogeneous microstructure. Although it still has not solved the problem of ductility reduction, as the strength increases because the microstructure optimization is not yet complete, it is expected that precise control of the unique complex heterogeneous structure in nitrogen-doped CoCrFeMnNi HEA can open a new era in overcoming the strength–ductility trade-off, one of the oldest dilemmas of structural materials.


2021 ◽  
Author(s):  
Sukjin Lee ◽  
Eun Jung Seo ◽  
Robert L. Cryderman ◽  
David K. Matlock ◽  
John G. Speer

Abstract Precision cold-forging processes are used to produce near-netshape parts that may then be carburized. During carburization thermal cycles, abnormal grain growth (AGG) after cold forging is known to develop microstructures which limit fatigue strength. In the present study, a small 0.04 wt.% Nb addition was made to a low-alloyed AISI 4121 steel containing 0.3 wt.% Mo. Subcritically annealed specimens were cold rolled (to simulate cold forging) at selected reduction ratios up to 50%, heated according to a simulated gas carburizing cycle at 930 °C, and water quenched to produce a final martensitic microstructure. The number density of abnormally grown grains increased rapidly as the cold rolling reduction ratio increased from 0 to 10%. With a further increase in reduction ratio, the extent of AGG decreased and was absent in samples subjected to the maximum reduction ratio of 50%. The evolution of fine (Nb, Mo)(C,N) precipitates at various stages of processing was characterized by thermodynamic calculations and electron microscopy and compared to the occurrence of abnormal austenite grain growth. The significance of these results for controlling AGG and thus optimizing fatigue performance in commercially-produced cold-forged and carburized components is discussed.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3314
Author(s):  
Kweon-Hoon Choi ◽  
Bong-Hwan Kim ◽  
Da-Bin Lee ◽  
Seung-Yoon Yang ◽  
Nam-Seok Kim ◽  
...  

In this work, the microstructure and corrosion behavior of a novel Al-6Mg alloy were investigated. The alloy was prepared by casting from pure Al and Mg+Al2Ca master alloy. The ingots were homogenized at 420 °C for 8 h, hot-extruded and cold-rolled with 20% reduction (CR20 alloy) and 50% reduction (CR50 alloy). The CR50 alloy exhibited a higher value of intergranular misorientation due to a higher cold rolling reduction ratio. The average grain sizes were 19 ± 7 μm and 17 ± 9 μm for the CR20 and CR50 alloys, respectively. An intergranular corrosion (IGC) behavior was investigated after sensitization by a nitric acid mass-loss test (ASTM G67). The mass losses of both the CR20 and CR50 alloys were similar at early periods of sensitization, however, the CR20 alloy became more susceptible to IGC as the sensitization time increased. Grain size and β phase precipitation were two critical factors influencing the IGC behavior of this alloy system.


2021 ◽  
Vol 1026 ◽  
pp. 14-18
Author(s):  
Wen Hao Cai ◽  
Zhuang Li ◽  
Kun Qi Lv ◽  
Li Zhang

The metastable beta titanium alloy Ti-3Al-5Mo-7V-3Cr (Ti-3573) was used as experimental material in this paper. Different cold rolling reduction was conducted in this titanium alloy. The results show that the total elongation (A50) reached maximum value of 16% after 30% cold rolling. The tensile strength reached maximum value of 910 MPa when the cold reduction increases to 50%. Microstructural evaluation suggested that the precipitation of α phases, deformation twin and stress-induced martensite is responsible for the enhanced tensile properties. Moreover, the TRIP/ TWIP deformation mode contributes to the improvement of the ductility of the titanium alloys.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 187
Author(s):  
Bo Zhang ◽  
Li Meng ◽  
Guang Ma ◽  
Ning Zhang ◽  
Guobao Li ◽  
...  

Twinning behaviors in grains during cold rolling have been systematically studied in preparing ultra-thin grain-oriented silicon steel (UTGO) using a commercial glassless grain-oriented silicon steel as raw material. It is found that the twinning system with the maximum Schmid factor and shear mechanical work would be activated. The area fraction of twins increased with the cold rolling reduction. The orientations of twins mainly appeared to be α-fiber (<110>//RD), most of which were {001}<110> orientation. Analysis via combining deformation orientation simulation and twinning orientation calculation suggested that {001}<110> oriented twinning occurred at 40–50% rolling reduction. The simulation also confirmed more {100} <011> oriented twins would be produced in the cold rolling process and their orientation also showed less deviation from ideal {001}<110> orientation when a raw material with a higher content of exact Goss oriented grains was used.


2021 ◽  
Vol 802 ◽  
pp. 140577
Author(s):  
Ariane Neves de Moura ◽  
Cláudio Moreira de Alcântara ◽  
Tarcísio Reis de Oliveira ◽  
Marco Antônio da Cunha ◽  
Marcelo Lucas Pereira Machado

Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2767 ◽  
Author(s):  
Chenchen Jiang ◽  
Qiuzhi Gao ◽  
Hailian Zhang ◽  
Ziyun Liu ◽  
Huijun Li

Microstructural evolutions of the 4Al alumina-forming austenitic steel after cold rolling with different reductions from 5% to 30% and then annealing were investigated using electron backscattering diffraction (EBSD), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Tensile properties and hardness were also measured. The results show that the average grain size gradually decreases with an increase in the cold-rolling reduction. The low angle grain boundaries (LAGBs) are dominant in the cold-rolled samples, but high angle grain boundaries (HAGBs) form in the annealed samples, indicating that the grains are refined under the action of dislocations. During cold rolling, high-density dislocations are initially introduced in the samples, which contributes to a large number of dislocations remaining after annealing. With the sustaining increase in cold-rolled deformation, the samples exhibit more excellent tensile strength and hardness due to the decrease in grain size and increase in dislocation density, especially for the samples subjected to 30% cold-rolling reduction. The contribution of dislocations on yield strength is more than 60%.


Sign in / Sign up

Export Citation Format

Share Document