Synthesis of Ni-YSZ Cermet for an Electrode of High Temperature Electrolysis by High Energy Ball Milling

Author(s):  
Hyun Seon Hong ◽  
Ui-Seok Chae ◽  
Keun Man Park ◽  
Soo-Tae Choo
2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Takeshi Hashishin ◽  
Zhenquan Tan ◽  
Kazuhiro Yamamoto ◽  
Nan Qiu ◽  
Jungeum Kim ◽  
...  

2010 ◽  
Vol 1267 ◽  
Author(s):  
Kurt Star ◽  
Alex Zevalkink ◽  
Chen-Kuo Huang ◽  
Bruce Dunn ◽  
Jean-Pierre Fleurial

AbstractYb14MnSb11 is a very promising thermoelectric material for high temperature applications. This compound is a member of a large family of Zintl phases with a “14-1-11” A14MPn11 stoichiometry (Pn = P, As, Sb, Bi; A = Ca, Ba, La, Sr, Yb, Eu; M = Mn, Al, Cd, Ga, In, Nb, Zn). Yb14MnSb11 exhibits low lattice thermal conductivity values and a p-type semimetallic behavior with values of the non-dimensional figure of merit zT peaking at 1.4 above 1200 K. There is significant interest in investigating how substitutions on any of the atomic sites impact the charge carrier concentration and mobility, band gap and lattice thermal conductivity. Recent reports have studied substitutions on the Yb and Mn sites with the goal of reducing hole carrier concentration and improving carrier mobility values.High energy ball milling has been shown to be a convenient method of synthesis to prepare Yb14MnSb11 and it has been used here to explore the solid solution systems derived from this compound by substituting Sb with Bi. High energy ball milling is a non-equilibrium process and not all of the 14-1-11 compounds are easily formed with this method. Characterization of the synthesized compositions was done by X-ray diffraction, electron microprobe, and high temperature measurements of the electrical and thermal transport properties up to 1275 K. The experimental results on undoped and doped solid solution samples are compared to that of pure Yb14MnSb11 samples prepared by the same high energy ball milling technique.


1993 ◽  
Vol 8 (11) ◽  
pp. 2985-2992 ◽  
Author(s):  
P.A. ZielińAski ◽  
R. Schulz ◽  
S. Kaliaguine ◽  
A. Van Neste

Room temperature, high energy ball milling was applied to various transition aluminas (γ, K, χ), producing thermodynamically stable α-alumina–a phenomenon that could otherwise be achieved only by high temperature (1100–1200 °C) heat treatment. The transformation proceeds in two steps. The first one consists of rapid microstructural rearrangements with continuously increasing α-transformation rate. In the second step (1–2 h from the start), only relatively small changes in morphology are observed with a constant α-transformation rate. The rate is influenced only by the milling intensity. The presence or the absence of oxygen in the milling atmosphere has a large influence on the final surface area of α-alumina.


Sign in / Sign up

Export Citation Format

Share Document