Analysis of Residual Stresses and Distortions in Brazed Joints of Cemented Carbide and Steel

Author(s):  
A. Ottlik ◽  
Volker Schulze ◽  
L. Pintschovius ◽  
Hermann Müller ◽  
Detlef Löhe
2005 ◽  
Vol 490-491 ◽  
pp. 491-496 ◽  
Author(s):  
A. Ottlik ◽  
Volker Schulze ◽  
L. Pintschovius ◽  
Hermann Müller ◽  
Detlef Löhe

Brazing of cemented carbides to steel bodies gives rise to the development of complex stress states and distortions which influence the fatigue behaviour of the parts. It is quite important to estimate the residual stresses with numerical methods whose agreement is to be guaranteed with experimental characterization of the brazed parts. In this work FEM simulations and X-ray as well as neutron stress analysis were used to examine the residual stresses of brazed samples. Joints with different geometries and dimensions made of cemented carbide and different steels showing different phase transformation behaviours were investigated.


2000 ◽  
Vol 347-349 ◽  
pp. 652-657 ◽  
Author(s):  
L. Pintschovius ◽  
B. Schreieck ◽  
B. Eigenmann ◽  
Detlef Löhe

2014 ◽  
Vol 9 (1) ◽  
pp. 99-107 ◽  
Author(s):  
E. Uhlmann ◽  
F. Sammler ◽  
M. Meixner ◽  
D. Heinrich ◽  
F. Gansert ◽  
...  

2014 ◽  
Vol 922 ◽  
pp. 322-327 ◽  
Author(s):  
Kengo Kaiwa ◽  
Shinji Yaoita ◽  
Tomohiro Sasaki ◽  
Takehiko Watanabe

This study focuses on understanding the effect of Ni and Co additions to filler metals on Ag-brazed joints of cemented carbide and martensitic stainless steel. Ni and Co added braze alloys were processed based on Ag-Cu-Zn ternary alloy, and joint strength and microstructure of the brazed layer has been investigated. The joint strength increased by the 2.0mass%Ni and 0.5mass%Co addition into braze alloy. This trend is remarkable in the Co added alloy, and the brazed joint increased by 141% compared to that in no-added alloy. The joint strength was closely related to the suppression effect of Co dissolution from cemented carbide into filler layer and Fe diffusion from the stainless steel to the brazed layer. In the brazed microstructure, Co-depleted zone caused by dissolution of Co in the cemented carbide was observed near the interface between the cemented carbide and the steel. Width of the Co-depleted zone significantly decreased in the Co added alloy. However, the joint strength decreased in the multiple addition compared to that in the single addition of Ni or Co.


2015 ◽  
Vol 9 (1) ◽  
pp. 33-38
Author(s):  
Jia Qianzhong ◽  
Li Man ◽  
Qu Fuzheng ◽  
Zhang Hongtao

The influence of brazing holding time on properties of cemented carbide-polycrystalline diamond (PCD) compact joints were investigated in this study. The microstructure and phase composition of joints were investigated by scanning electron microscopy, electron probe microanalyzer, and X-ray diffraction. Microstructural investigations revealed the presence of Ag-based solid solution, Cu-based solid solution, Cu0.64Zn0.36, and a small amount of MnNi phase at the joint interface. The max shear strength of brazed joints 350.6 MPa was determined in the samples joined at 15 s, which was partially due to the dispersion strengthening effect of gray-black grains containing Cu-based solid solution, Cu0.64Zn0.36 and MnNi phase in the joints. Equal-area-circle grain diameter of the gray-black grains grew with longer holding time, whereas the shear strength decreased because of the formation of continuous intermetallic compounds layer along the joint boundary. Thermal damage of the PCD layer also deteriorated with increased holding time, and hence shorter holding time was preferable in the production.


1996 ◽  
Vol 11 (12) ◽  
pp. 3090-3098 ◽  
Author(s):  
Pascal J. Yvon ◽  
Benoit Marty ◽  
Stathis D. Peteves

Modelling, but more importantly, measurements of residual stresses are needed to guide the design and development of high integrity ceramic/metal joints. This study evaluates the influence of the metal workpiece on the residual stress state present in the ceramic part of the joint. Si3N4 was directly bonded via the active metal brazing route to several metals Cu, Mo, W, Ta, Nb, Zr, Ti, and AISI 316, selected to cover an extended range of thermomechanical properties. The residual strains in the joints were measured using an x-ray diffraction technique. The results indicate that the maximum residual stresses scale with the thermal mismatch for metals with low coefficients of thermal expansion. The experimental results are compared with analytical calculations of the residual stresses.


Sign in / Sign up

Export Citation Format

Share Document