In Situ High Temperature Texture Characterisation in NiTi Shape Memory Alloy Using Synchrotron Radiation

Author(s):  
Andersan S. Paula ◽  
Karimbi K. Mahesh ◽  
Francisco Manuel Braz Fernandes ◽  
Rui Miguel S. Martins ◽  
A.M.A. Cardoso ◽  
...  
2005 ◽  
Vol 495-497 ◽  
pp. 125-130 ◽  
Author(s):  
Andersan S. Paula ◽  
Karimbi Koosappa Mahesh ◽  
Francisco Manuel Braz Fernandes ◽  
Rui Miguel S. Martins ◽  
A.M.A. Cardoso ◽  
...  

The aim of the present experiment was to analyse the structural evolution during annealing of Nickel-Titanium (Ni-Ti) SMA subjected to different thermomechanical treatments. As structural evolutions are accompanied by the changes in preferential orientations, pole figures were employed to study the in-situ conditions.


Materialia ◽  
2019 ◽  
Vol 5 ◽  
pp. 100220 ◽  
Author(s):  
Matthew Carl ◽  
Jesse Smith ◽  
Robert W. Wheeler ◽  
Yang Ren ◽  
Brian Van Doren ◽  
...  

2014 ◽  
Vol 81 ◽  
pp. 4-7 ◽  
Author(s):  
S. Wang ◽  
F.M. Guo ◽  
D.Q. Jiang ◽  
Y. Liu ◽  
L.S. Cui

2010 ◽  
Vol 152-153 ◽  
pp. 1755-1758
Author(s):  
Yan Li ◽  
Jie Qi ◽  
Rui Rui Fan ◽  
Chuan Xin Zhai ◽  
Chun Hua Xu

TiNbSn alloy has high specific strength, low modulus of elasticity, excellent corrosion resistance, no side effects, such as toxic and exhibits shape memory effects after appropriate technical processing. This alloy may substitute as NiTi shape memory alloy to become the new generation of biological materials. It has been reported the studies of this alloy, such as the component and proportion, processing technology, mechanical properties and corrosion resistance. Based on the previous research, the bio-metal material, Ti-10Nb-5Sn alloy was heated and cooled repeatedly in a heater system located in TEM chamber and, at the same time, was observed in situ using a high resolution transmission electron microscope to study the memory property of the alloy and the mechanism of the transformation between austenite β and martensite phase. The results show that, during heating stage from 295K to 400K, the martensite began to dissolve at 355K, and the martensite disappeared completely at 385K, meanwhile, the austenite was created. During cooling stage from 400K to 295K, the martensite begins to take shape at 353K and the transformation was completed at 333K. The alloy can memory the room and high temperature structures, showing two-way memory functions. The high-temperature austenite of Ti-10Nb-5Sn alloy shows body-centered cubic β phase with the unit cell parameter a=0.3283nm; the martensite at room temperature shows orthorhombic NbTi4 phase (M) with the unit cell parameters a=0.3152nm, b=0.4854nm, c=0.4642nm. The orientation relationship between M phase and β phase is , , , , and . The crystal plane , as the habit plane, transforms into during the transformation from β to M phases. The martensite transformation mechanism is that the and transform to and through the tiny migration of atoms.


2018 ◽  
Vol 144 ◽  
pp. 748-757 ◽  
Author(s):  
Harshad M. Paranjape ◽  
Partha P. Paul ◽  
Behnam Amin-Ahmadi ◽  
Hemant Sharma ◽  
Darren Dale ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4455
Author(s):  
Pedro Cunha Lima ◽  
Patrícia Freitas Rodrigues ◽  
Ana Sofia Ramos ◽  
José D. M. da Costa ◽  
Francisco Manuel Braz Fernandes ◽  
...  

The interaction between the stress-induced martensitic transformation and resistivity behavior of superelastic NiTi shape memory alloy (SMA) was studied. Strain-controlled low-cycle fatigue up to 6% was monitored by in situ electrical resistivity measurements. The experimental results show that a great motion of martensite fronts results in a significant accumulation of defects, as evidenced by transmission electron microscopy (TEM), before and after the tensile cycles. This gives rise to an overall increase of the resistivity values up to the maximum deformation. Therefore, the research suggests that shape memory alloy wire has great potential as a stress sensor inside bulk materials.


Sign in / Sign up

Export Citation Format

Share Document