Optimal Selection of Tool Geometry by Finite Element Simulation

2007 ◽  
Vol 10-12 ◽  
pp. 702-706
Author(s):  
Sheng Wen Zhang ◽  
Chan Yuan Gong ◽  
Xi Feng Fang ◽  
Gui Cheng Wang

The effect of cutting tool geometry on cutting process is very prominent and cannot be ignored, especially the interactions between tool geometries. In this study, the effects of the rake angle, the clearance angle, the cutting edge radius and the interaction between rake angle and clearance angle on cutting force and cutting temperature are numerically investigated using finite element method. Four-factor three-lever orthogonal experimental design is adopted in the finite element simulation of orthogonal cutting process. An analysis of range is performed to identify significant trends in the cutting force and cutting temperature and the optimal level values of each factor. The result shows that the effect of the rake angle on cutting force is significant. The effect of interaction between rake angle and clearance angle on cutting temperature also appeared to be important. Finally, the optimal parameter combinations of tool geometries for cutting force and cutting temperature are obtained, respectively.

2013 ◽  
Vol 579-580 ◽  
pp. 202-207
Author(s):  
Guo He Li ◽  
Hou Jun Qi ◽  
Bing Yan

For the high speed cutting process of hardened 45 steel (45HRC), a finite element simulation of cutting deformation, cutting force and cutting temperature is finished with the large general finite element software ABAQUS. Through the building of geometry model, material model and heat conduction model, also the determination of boundary conditions, separation rule and friction condition, a thermal mechanical coupling finite element model of high speed cutting for hardened 45 steel is built. The serrated chip, cutting force and cutting temperature can be predicted. The comparison of experiment and simulation shows the validity of the model. The influence of cutting parameters on cutting process is investigated by the simulation under different cutting depthes and rake angles. The results show that as the increase of rake angle, the segment degree, cutting force and cutting temperature decrease. But the segment degree, also the cutting force and cutting temperature increase with the increase of cutting depth. This study is useful for the selection of cutting parameters of hardened steel.


2012 ◽  
Vol 522 ◽  
pp. 210-216
Author(s):  
Tian Biao Yu ◽  
Xue Wei Zhang ◽  
Jia Ying Pei ◽  
Wan Shan Wang

Based on metal cutting theory and the key technology of finite element simulation, this paper uses finite element software Deform to establish three-dimensional finite element simulation model and simulate cutting process. This paper uses the work piece material is IN718 high temperature alloys packaged in Deform, and analyzes the processing characteristics of high temperature, choosing the right tools and cutting dosages to simulate. Through the simulation we can get scraps forming process, the surface stress, strain, temperature and cutting force distribution of the workpiece and the tool. We can also get the change rule of cutting force and cutting temperature under the different cutting parameters. The simulation results provide the theoretical basis for the optimization of cutting parameter selection in production practice.


2014 ◽  
Vol 800-801 ◽  
pp. 305-310
Author(s):  
Yong Chun Zheng ◽  
Er Liang Liu ◽  
Jiao Li ◽  
Hong Yan Ju ◽  
Li Guo Zhao

The research focused on the finite element simulation of the surface residual stress and took an experiment to get cutting temperature and cutting force by changing different groove and coated tools. Then it analyzed the influence of cutting and tool parameters on cutting force and temperature. Finally, the results reached a conclusion about the way that the tools with different groove and coating influenced the residual stress. The coated tools reduced the residual tensile stress in the machined surface. The axial and tangential residual stress was tensile stress and the tangential residual stress was larger than the axial in machining.


2012 ◽  
Vol 522 ◽  
pp. 62-67 ◽  
Author(s):  
Guo He Li ◽  
Hou Jun Qi ◽  
Bing Yan

A finite element simulation study of cutting process and whole part deformation of a large thin-wall aluminum alloy part used in aerospace is carried out by ABAQUS. The geometry model, material model and heat conduction model are built. The friction conditions and boundary constraints are determined. The whole process of chip generation is simulated and the distribution of strain, stress, cutting temperature and are given. The chip formation and the cutting force are also predicted. Based on the prediction results, the deformation of whole part is predicted. This study establishes the foundation of selection and optimization of cutting parameters and deformation compensation for this kind of large thin-wall parts.


2019 ◽  
Vol 13 (2) ◽  
pp. 181-188
Author(s):  
Meng Liu ◽  
Guohe Li ◽  
Xueli Zhao ◽  
Xiaole Qi ◽  
Shanshan Zhao

Background: Finite element simulation has become an important method for the mechanism research of metal machining in recent years. Objective: To study the cutting mechanism of hardened 45 steel (45HRC), and improve the processing efficiency and quality. Methods: A 3D oblique finite element model of traditional turning of hardened 45 steel based on ABAQUS was established in this paper. The feasibility of the finite element model was verified by experiment, and the influence of cutting parameters on cutting force was predicted by single factor experiment and orthogonal experiment based on simulation. Finally, the empirical formula of cutting force was fitted by MATLAB. Besides, a lot of patents on 3D finite element simulation for metal machining were studied. Results: The results show that the 3D oblique finite element model can predict three direction cutting force, the 3D chip shape, and other variables of metal machining and the prediction errors of three direction cutting force are 5%, 9.02%, and 8.56%. The results of single factor experiment and orthogonal experiment are in good agreement with similar research, which shows that the model can meet the needs for engineering application. Besides, the empirical formula and the prediction results of cutting force are helpful for the parameters optimization and tool design. Conclusion: A 3D oblique finite element model of traditional turning of hardened 45 steel is established, based on ABAQUS, and the validation is carried out by comparing with experiment.


2013 ◽  
Vol 820 ◽  
pp. 151-156
Author(s):  
S.H. Zou ◽  
H.L. Wang ◽  
C.X. Yang ◽  
Y.P. Shi ◽  
J.H. Ge

We expound the finite element simulation and the key points of metal turning by the material properties of the stem in this paper, and select the proper material constitutive equation, then use the adaptive meshing technique, and then finite element modeling was carried out on the valve stem in the professional finite element software Advantedge FEM. The optimization scheme we designed of finite element simulation for the valve stem through the finite element software Advantedge FEM, and we research the influence of the amount of feed and speed cutting process about the cutting force and the cutting temperature.


2011 ◽  
Vol 421 ◽  
pp. 123-128 ◽  
Author(s):  
Hong Wei Zhao ◽  
Lin Zhang ◽  
Peng Zhang ◽  
Cheng Li Shi

A series of three-dimension molecular dynamics (MD) simulations are performed using hybrid potentials to investigate nanometric cutting process of single-crystal copper with diamond tool. The effect of tool geometry in nanometric cutting process is investigated. It is observed that with the negative rake angle, the volume of chips becomes smaller due to large hydrostatic pressure and plastic deformation generated in the subsurface layer. When the rake angle changes from -40° to 40°, the machined surface becomes smoother. Besides, the ratio of tangential force to normal force decreases with the increase of rake angle. In addition, the effect of clearance angle is analyzed and approximate entropy (APEN) is presented to denote the complexity and uncontrollability of the interactions between tool and workpiece with different clearance angles. With the decrease of clearance angle, the machined surface quality decreases with the local stress distribution in subsurface layer is uneven. An appropriate clearance angle not only keeps cutting force stable, but makes sure of the quality of machined surface as well.


Sign in / Sign up

Export Citation Format

Share Document