Experimental Investigation on HRBF500 RC Circular Pile under Low Cyclic Reversed Loading

2011 ◽  
Vol 105-107 ◽  
pp. 1250-1254
Author(s):  
Qian Fu ◽  
Shu Ting Liang ◽  
Xiao Jun Zhu

Six concrete piles reinforced with 500MPa fine-grain steel bars were tested under low cycle reversed loading to study the seismic behavior such as failure patterns, characteristics of hysteretic and skeleton curve. Three parameters, longitudinal reinforcement strength, reinforcement ratio and axial compression ratio were taken into consideration. The main failure patterns as well as hysteretic curve of those piles were obtained, and influence of each of the three parameters on the ductile behavior, ability of energy dissipation and law of strength degeneration were analyzed. The experimental results indicate that the mechanical behavior of reinforced concrete low cyclic reversed loading columns with fine grain high strength reinforcement is similar to normal reinforced columns. The concrete piles reinforced with 500MPa fine-grain steel bars show good seismic performance and 500MPa fine-grain steel bars can be used in seismic design.

2011 ◽  
Vol 287-290 ◽  
pp. 703-707
Author(s):  
Yan Han ◽  
Hong Cheng Guan ◽  
Zhen Li

Through experimental study on three HRB400 steel bar reinforced concrete columns subjected to low cyclic reversed loading, the failure patterns, hysteretic curves and skeleton curves were obtained. The influence of longitudinal high-strength reinforcement ratio upon the hysteretic characteristics, ductile behavior and ability of energy dissipation were analyzed. The results show that the main failure pattern was bending failure; and with the increscent of the longitudinal high-strength reinforcing steel bar ratio, the columns can endure larger seismic loads and displacement; the seismic performance of the whole reinforced concrete columns can be effectively improved by arranging reasonable high-strength steel bars.


2012 ◽  
Vol 238 ◽  
pp. 838-843 ◽  
Author(s):  
Ting Yan Wang ◽  
Jun Wei Zhang ◽  
Dan Ying Gao

By studying the two high-strength concrete frame joints by means of experimental investigate and finite element analysis with the low cycle reversed loading method, it discussed the influence of the steel fiber on the seismic behavior of the high-strength frame joints. The result shows that, mixed with steel fiber can enhance the constraint of the concrete at the joint core area, improve the seismic behavior. Amount of steel fiber can replace part of the stirrup.


2019 ◽  
Vol 38 (5) ◽  
pp. 518-526 ◽  
Author(s):  
Ping Wu ◽  
Yang Guo ◽  
Dayong Zhu ◽  
Weiliang Jin ◽  
Zhenhua Zhang ◽  
...  

2020 ◽  
Vol 10 (13) ◽  
pp. 4684
Author(s):  
Jian Feng ◽  
Shuo Wang ◽  
Marco Meloni ◽  
Qian Zhang ◽  
Jingwen Yang ◽  
...  

This paper presents an experimental investigation of the seismic performance of interior beam–column joints with beams reinforced with Grade 600MPa longitudinal steel bars. Six full-scale reinforcement concrete (RC) interior joints are designed with different axial compression ratios and longitudinal reinforcement ratios, which are tested under reversed cyclic loading. Failure modes, hysteretic curves, skeleton curves, energy dissipation capacity, and the ductility of joints are investigated systematically. Moreover, the effect of the different axial compression ratios and longitudinal reinforcement ratios on the seismic behavior of the joints are deeply studied. Comparisons performed between specimens demonstrate that among the beam–column joints with 600 MPa high strength steel bars, specimens with high reinforcement ratios have better energy dissipation capacity, slower stiffness degradation, and lower ductility. Moreover, with the increase of the axial compression ratios, the energy dissipation capacity and ductility become weaker. The test results show the favorable seismic properties of beam–column joints equipped with 600 MPa high strength steel bars, which can be regarded as the research basis of the popularization and application of 600 MPa high strength steel bars in reinforcement concrete frame structures.


2011 ◽  
Vol 71-78 ◽  
pp. 506-509
Author(s):  
Ji Chao Zhang ◽  
Nan Li ◽  
Lei Ji

Based on the need of housing industrialization, using full-scale models, this paper investigated the seismic behavior of pre-cast concrete beam-column subassemblies with cast-in-situ monolithic joints under low-cycle reversed loading. The failure pattern, hysteretic characteristic, skeleton curve, ductility and energy dissipation were also analyzed. The result indicated that beam-column joints with longitudinal bars welded at the bottom of beams can meet the requirements of “strong column-weak beam, stronger joint”.


Sign in / Sign up

Export Citation Format

Share Document