Dynamic Response of Magnetorheological Fluid Damper for Automotive Suspension and the Influence by Long-Time Standing-Still

2011 ◽  
Vol 105-107 ◽  
pp. 1689-1692 ◽  
Author(s):  
Hong Hui Zhang ◽  
Hai Peng Xu ◽  
Chang Rong Liao ◽  
Zhao Xiang Deng

Dynamic response is a key parameter for the engineering applications of MR damper. However, the response time has many different definitions, and which leads to a confusion of the measurement. Commonly, the response of MR damper in the new-designed status is focused, the instance after long-time use or standing-still has not been proposed. In this paper, the influence on the response time by the long-time standing-still is investigated, which shows that the response is largely lengthened. Next step, the measurement will be optimized, and the response of MR damper after long-time use will be in consideration.

2005 ◽  
Vol 19 (07n09) ◽  
pp. 1506-1512 ◽  
Author(s):  
CHANGSHENG ZHU

The response time of a rotor system supported upon a disk-type magnetorheological fluid damper operating on shear mode is measured experimentally. The effects of rotating speed, step current and magnetic particle volume fraction, on the response time are dealt with. It is shown that the dynamic response can be described by first 10% response time and rapid response time. Generally, the first 10% response time and the rapid response time are in order of less than 0.1 second and 0.1~0.4 second. The magnetic field strength, magnetic particle volume fraction and power supply have a great effect on the response time. The response time in dropping step current is several times longer than that in applying step current. There is a zero initial delay time at either applying or dropping the current, which is caused by the magnetizing or de-magnetizing process.


2015 ◽  
Vol 24 (8) ◽  
pp. 085021 ◽  
Author(s):  
Shuaishuai Sun ◽  
Jian Yang ◽  
Weihua Li ◽  
Huaxia Deng ◽  
Haiping Du ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document