The Simulation Analysis and Modeling of the Coupling Vibration Absorber System for the Wheel Loader

2011 ◽  
Vol 121-126 ◽  
pp. 2358-2362 ◽  
Author(s):  
Zhun Wang

In accordance with the Coupling vibration absorber system, introduced to reduce the vibration of the wheel loader at driving, designed are two dynamic models for the loaders either with the application of vibration absorber system or without that of it. The simulation analysis of the vibration reduction, with the help of the simulation software Matlab/ Simulink, shows that the vibration absorber system may reduce not only the vehicle vibration effectively but also that of the work device, thus providing the basis for the further research and development of the riding control system.

Author(s):  
V. Sampath ◽  
R. Mohan ◽  
S. Wang ◽  
L. Gomez ◽  
O. Shoham ◽  
...  

Performance of compact separators depends on implementation of stable and robust control strategies that are suited for specific applications. In this investigation, an intelligent control system has been developed for Compact Multiphase Separation System (CMSS©) which consists of integrated configurations of three compact separators, namely, Gas-Liquid Cylindrical Cyclone (GLCC©), Liquid-Liquid Cylindrical Cyclone (LLCC©) and Liquid-Liquid Hydrocyclone (LLHC). This is a two-part paper, the first part (current paper) deals with the Modeling and Simulation of the CMSS© and the second part deals with Experimental Investigation. The specific objective of this CMSS© configuration is to knock out free water from the upstream fluids. In mature oil fields, water handling poses a huge problem. Thus water knock out at the earliest stage helps in significant cost savings. A novel fuzzy logic control system has been designed and tested for change in set-point of differential pressure ratio in LLHC. Dynamic models have been developed for each of the above mentioned control systems for design of stable PID parameters. A dynamic simulation platform (DSP) has been developed based on these models in Matlab/Simulink™ for predicting the transient performance of the integrated system. Steady state mechanistic models of individual devices are integrated to the Matlab/Simulink™ platform using look up tables to predict the overall response of the CMSS© for different scenarios.


2014 ◽  
Vol 496-500 ◽  
pp. 1452-1456
Author(s):  
Yan Xiang Wu ◽  
Chao Qun Zhou ◽  
Chao Jun Zhang ◽  
Pu Sun

In this paper, through analysis on characteristics of the operation of the mine fanner, According to the requirement of low speed and smooth operation and quick response for AC speed regulating system of mine fanner, a new control system that based on vector control of Fuzzy-PID was designed. The simulation model was simulated and analysised by MATLAB/SIMULINK. The result indicated that the vector control of Fuzzy-PID system can not only quickly responded to the change of the load torque but also have good speed control performance, and has reliable engineering practical value.


2013 ◽  
Vol 135 (5) ◽  
Author(s):  
Xueguang Liu ◽  
Xiaoxiao Feng ◽  
Ye Shi ◽  
Ye Wang ◽  
Zhijun Shuai

In this work, a semiactive electromagnetic vibration absorber has been developed based on a proposed electromagnetic stiffness adjustable spring model, which presents a new solution for adjusting stiffness in the field of vibration absorber devices. Simulation study on the electromagnetic spring has been performed to determine the structural parameter of the semiactive vibration absorber. An experimental rig is also built up to investigate its practical vibration control effectiveness. Firstly, the finite element model of the test bench is used to analyze its vibration characteristics. Then, the vibration reduction effect is predicted through the simulation analysis, from which the optimal control positions are found. Finally, the experimental studies are also conducted, and the results show that this semiactive electromagnetic vibration absorber has a frequency adjustment range from 21 Hz to 25 Hz, in which considerable vibration reduction from 5 dB to 10 dB can be achieved.


2018 ◽  
Vol 4 (2) ◽  
pp. 129-140 ◽  
Author(s):  
Jingyu Huang ◽  
Xiong Zhou ◽  
Liwei Shang ◽  
Zhewei Wu ◽  
Weinan Xu ◽  
...  

Background: In this article, the TR08 car of the Shanghai Magnetic Train Demonstration Line was prototyped and a multi-body dynamics simulation model was established. And based on the low-interference track irregularity power spectrum in Germany, track irregularity data was obtained. Used dynamic simulation software, completed the dynamic simulation analysis of the vehicle-rail model controlled by the proportion-integral-derivative control system PID parameters. It can be concluded that the vibration of trains passing through irregular tracks at different speeds, and evaluated its comfort. The optimal solution for the control of the PID parameters of the train also has been derived. Aim: Evaluation of operational comfort and suspension gap control effect of Shanghai Maglev Train Demonstration Line by simulation analysis. Materials and methods of the studies: Simulation analysis. Results: The vibration acceleration and suspension gap of Shanghai Maglev Train Demonstration Line has been obtained. Conclusion: By adjusting the parameters of PID control system, the vibration acceleration of train can be reduced and the ride comfort can be improved.


TAPPI Journal ◽  
2009 ◽  
Vol 8 (1) ◽  
pp. 4-11
Author(s):  
MOHAMED CHBEL ◽  
LUC LAPERRIÈRE

Pulp and paper processes frequently present nonlinear behavior, which means that process dynam-ics change with the operating points. These nonlinearities can challenge process control. PID controllers are the most popular controllers because they are simple and robust. However, a fixed set of PID tuning parameters is gen-erally not sufficient to optimize control of the process. Problems related to nonlinearities such as sluggish or oscilla-tory response can arise in different operating regions. Gain scheduling is a potential solution. In processes with mul-tiple control objectives, the control strategy must further evaluate loop interactions to decide on the pairing of manipulated and controlled variables that minimize the effect of such interactions and hence, optimize controller’s performance and stability. Using the CADSIM Plus™ commercial simulation software, we developed a Jacobian sim-ulation module that enables automatic bumps on the manipulated variables to calculate process gains at different operating points. These gains can be used in controller tuning. The module also enables the control system designer to evaluate loop interactions in a multivariable control system by calculating the Relative Gain Array (RGA) matrix, of which the Jacobian is an essential part.


2021 ◽  
Vol 1105 (1) ◽  
pp. 012004
Author(s):  
R H Ali Faris ◽  
A A Ibrahim ◽  
N B Mohamad wasel ◽  
M M Abdulwahid ◽  
M F Mosleh

Sign in / Sign up

Export Citation Format

Share Document