Investigation on Temperature Field and Thermal Stress of Dish Solar Concentrator’s Focal Region

2011 ◽  
Vol 148-149 ◽  
pp. 20-23
Author(s):  
Xing Zhi Wang ◽  
Yong Shuai ◽  
Fu Qiang Wang ◽  
Chun Liang Yu

Depending on the solar radiant flux and velocity measured in Harbin, with finite element method, use a modified radiant heat flux function to calculate the temperature field of a plate on the focal region of a dish solar concentrator. Compared the result with picture taken by infrared camera, there is a good accordance between them. The temperature field is used as the loading parameters to calculate the thickness’s impact on the thermal stress field in the plate. When the value of the thickness increases, the maximum values of the stress increase, but the overall stress field tend to decrease.

2013 ◽  
Vol 444-445 ◽  
pp. 1422-1426
Author(s):  
Li Zi Chen ◽  
Chun Yuan Jing ◽  
Xiao Wei Guan

Based on the theory of the thermal conduction and the thermal elastic equations, does some researches in view of the thermal Damage of K9 glass by finite element analysis. The distribution of temperature field and thermal stress field of the ideal K9 glass which irradiated by 100W pulsed-Nd: YAG laser are simulated with finite element software. The result shows that the temperature of the surface of glass doesnt reach the melting and the thermal stress of it doesnt get to the requirement for fracture strength. Then, the model of K9 glass containing inclusions has be built. The simulation result indicates that inclusions may affect the distribution of temperature field and thermal stress field of the K9 glass, which makes the injected laser beams energy centralize on a small area around the inclusions owing to the existence of the strong absorbing, thus leading to K9 glass laser damage threshold reduction and easier to thermal damage.


2013 ◽  
Vol 401-403 ◽  
pp. 59-64
Author(s):  
Qi Liu ◽  
Guang Yao Ouyang ◽  
Ping Zhang

The paper analyzed the temperature field, the thermal stress field and the stress field under mechanical loads of a diesel engine cylinder head with finite element analysis software ANASYS, then took above temperature field results and mechanical loads as boundary conditions to impose on the established model of cylinder head using the thermal mechanism indirect coupled method, researched the stress field and distortion of cylinder head under effect of multiplicative loads. The result indicates that the point of the highest temperature and the maximum thermal stress locates on the middle nose of fire deck; under thermal mechanism coupled effect, the points of maximum stress locate on the interface of bolt head and screw of cylinder head and on the middle nose of fire deck; the maximum pull stress the cylinder head undertook is less than that the material can survive; the distortion of the cylinder head is very small, thus has little influence on the fabrication of other accessories, and the global distortion of cylinder head performs symmetry.


2013 ◽  
Vol 579-580 ◽  
pp. 86-90
Author(s):  
Cheng Guo ◽  
Yu Kui Wang ◽  
Zhen Long Wang ◽  
Bao Cheng Xie

A three-dimensional coupled thermal structural model for micro electrical discharge is presented in this paper. Temperature field and thermal stress field of a single spark discharge process are analysed using this model by indirect coupling method. Temperature field is firstly solved which acts as the foundation of solving thermal stress field. To make the simulation results more reliable, these important elements are also taken into account, such as temperature-dependent properties of material, the phenomenon of plasma channel radius expanding, the percentage of discharge energy transferred to the workpiece and Gaussian distribution of heat flux. The results can explain the formation of cracks around the discharge crater. The thickness of the white layer and residual stresses can be predicated using this model.


2014 ◽  
Vol 887-888 ◽  
pp. 1309-1312
Author(s):  
Ming Di Wang ◽  
Xiao Ling Hang ◽  
Kai Bo Guo ◽  
Shi Hong Shi ◽  
Lin Ning Sun

In the process of deposition, the moving high energy heat source effect on the metal entity, and form the molten pool and the temperature field of directional conduction. Powder is accumulated in the substrate point by point, molten powder instantly solidify into a solid which is combined with substrate (or sediment) to reach metallurgical combination, from the perspective of the thermodynamic, the temperature field produced by coupling ring of heat source is regarded as a moving load to the base plate and the sedimentary section, and transient thermal stress field is generated, the load and boundary conditions (temperature field) of thermal stress field change over time, at the same time, the solution domain of thermal stress field change over time as a result. Therefore, through the life and death unit technology (ANSYS finite element analysis software of advanced analysis techniques) combined with the circulation order, the simulation of point to add deposition process is realized.


Sign in / Sign up

Export Citation Format

Share Document