Finite Element Analysis of the Pull-Out Specimens of Steel Reinforced Lightweight Concrete

2012 ◽  
Vol 166-169 ◽  
pp. 514-519
Author(s):  
Jian Wen Zhang ◽  
Shi Hui Guo

Finite element analysis method of steel reinforced lightweight concrete pull-out specimens is exploded based on the test results. Spring element and local bond slip constitutive relation are introduced in analysis so as to consider the interfacial bond-slip between steel and lightweight concrete. Element tributary area and flange or web position should be taken into account in order to confirm the spring element real constant. Analysis results indicate that specimens bearing capacity and deformation can be well simulated adopting the stated method and constitutive relationship.

2020 ◽  
Vol 23 (9) ◽  
pp. 1759-1771
Author(s):  
Bai Zhang ◽  
Hong Zhu ◽  
Jun Chen ◽  
Ou Yang

To study the deterioration of bond performance between concrete and corroded steel bars with designed corrosion levels of 0%, 0.5%, 1.0%, 2.0%, 5.0%, 8.0%, and 10.0%, pull-out tests were performed on cube specimens with the dimensions of 10 D × 10 D × 10 D, where D is the diameter of longitudinal rebars ( D = 14, 20, and 25 mm, respectively). The experimental results indicated that with the specimen dimensions increased, the expansive cracks induced by corrosion products appeared earlier and the maximum expansive cracking width was larger at the same corrosion levels. The bond strength and the initial bond stiffness first increased and then dramatically decreased as the concrete deterioration and reinforcement corrosion levels increased for each specimen dimension, whereas the specimens with the larger diameter ( D = 25 mm) were more sensitive to the corrosion than those with the smaller diameter ( D = 14, 20 mm). The free-end slip and the energy dissipation for each specimen dimensions, which decreased slowly with increasing corrosion levels before the corrosion-induced cracks and then weakened rapidly when the corrosion-induced cracks appeared, was almost independent of the influence on corrosion levels after the corrosion-induced cracks appeared. Based on the experimental results, a simplified expression for the calculation of residual bond stress and an empirical model of the bond–slip constitutive equation that considers the influence of reinforcement corrosion were proposed, which can be used in finite element analysis of corroded reinforced concrete.


2011 ◽  
Vol 243-249 ◽  
pp. 1461-1465
Author(s):  
Chuan Min Zhang ◽  
Chao He Chen ◽  
Ye Fan Chen

The paper makes an analysis of the reinforced concrete beams with exterior FRP Shell in Finite Element, and compares it with the test results. The results show that, by means of this model, mechanical properties of reinforced concrete beams with exterior FRP shell can be predicted better. However, the larger the load, the larger deviation between calculated values and test values. Hence, if more accurate calculation is required, issues of contact interface between the reinforced concrete beams and the FRP shell should be taken into consideration.


2020 ◽  
Vol 12 (5) ◽  
pp. 168781402091868
Author(s):  
Shuang Jing ◽  
Anle Mu ◽  
Yi Zhou ◽  
Ling Xie

The seal is the key part of the cone bit. To reduce the failure probability, a new seal was designed and studied. The sealing performance and structure optimization of the X-O composite seal was analyzed and compared by finite-element analysis. The stress and contact pressure were analyzed to establish the main structural parameters that affect sealing performance and the direction of the structural optimization. By optimizing these structural parameters, including the height, and the radial and axial arc radii, an optimized structure is obtained. The results show that (1) the X-O composite seal can meet the seal requirement, the excessive height of the X seal ring is the root cause of the uneven distribution of stress, pressure, and distortion. (2) A new seal structure is obtained, the distribution of pressure and stress is reasonable and even, and the values of stress and pressure are reduced to avoid distortion and reduce the wear. Finally, the field test results of the X-O composite seal of cone bit showed that the service life of the bit bearing increased by 16% on average and the drilling efficiency increased by 11% on average compared with the original cone bit with the O seal ring.


Author(s):  
Liangyao Yu ◽  
Liangxu Ma ◽  
Jian Song

This paper presents a new approach to the design, testing and analysis of a magnetorheological brake which uses a multi-path magnetic circuit to satisfy the braking demand of vehicles. In contrast with a general braking system, an automotive brake exhibits an outstanding performance for high torques and long reaction times. We use a proposed power-law model and finite element analysis to obtain the magnetorheological braking performance for a high shear rate and a high-intensity magnetic field. Finite element analysis with different structures is adopted to determine the parameters of the magnetorheological braking and the layout of the magnetic circuits. An integrated prototype is also fabricated and tested. The test results show that the brake torque is relatively high, and the torque can be accurately controlled by the input current. The reaction time is less than 100 ms. We also analyse the experimental results and use these as the basis for fabricating a full-sized prototype. The full-sized prototype generally exhibits a high torque capacity and a fast dynamic response, thereby validating the feasible application of magnetorheological fluids in automotive braking.


2013 ◽  
Vol 275-277 ◽  
pp. 1359-1363 ◽  
Author(s):  
Jeong Soo Kim ◽  
Moon Kyum Kim

Owing to strong nonlinearity of shotcrete and difficulty of determining the equivalent material properties of steel-shotcrete composites for numerical analysis, methods are required to estimate nonlinear behavior of steel-shotcrete composite in the computational aspect efficiently. In this study, the behavior of steel-shotcrete composites, main primary supports in the NATM tunnel, are estimated by finite element method using the fiber beam-column element. The numerical results are compared with results of uniaxial and flexural test. Results of comparison show that finite element analysis of using fiber beam-column element can be an efficient tool of estimating the steel-shotcrete composite as the primary support in the NATM tunnel.


Sign in / Sign up

Export Citation Format

Share Document