Finite Element Analysis of Bulk Solids Flow: Part 1, Development of a Model Based on a Secant Constitutive Relationship

1997 ◽  
Vol 67 (2) ◽  
pp. 141-150 ◽  
Author(s):  
Qinggang Meng ◽  
Jan C. Jofriet ◽  
Satish C. Negi
2012 ◽  
Vol 476-478 ◽  
pp. 2463-2468 ◽  
Author(s):  
Ji Cheng Zhang ◽  
Jun Yang

In this paper, a constitutive relationship of the concrete core restrained by L-Shaped steel tube is put forward based on referring to the constitutive relations of core concrete in concrete-filled square steel tube columns, which takes the restraint of steel tube to concrete as an equivalent confinable effect coefficient . Load-deformation relationship of L-Shaped concrete-filled steel tubular column subjected to axial compression is analyzed by finite element analysis (using ABAQUS software). The predicted load versus deformation relationship cures are in good agreement with those of tests based on the finite element analysis, loads carried by steel tubes and concrete respectively during the loading process, as well as interactions between them are analyzed. Finally, influences of length-width ratio and width-thickness ratio on the interaction between steel tubes and concrete are investigated.


2014 ◽  
Vol 578-579 ◽  
pp. 263-268
Author(s):  
Bing Li ◽  
Qi Zhang ◽  
Shuang Meng

The paper achieved the nonlinear analysis of bearing capacity of recycled concrete filled steel tubular short columns by using finite element analysis software ABAQUS. In order to meet the finite element analysis the writer put forward the modified formula of recycled concrete constitutive relationship of core, and elaborate d the contact at the interface of steel tube and the core concrete and related modeling points. Finally the load-deformation curves of the finite element analysis and test results coincide well. It indicates that the modified formula of recycled concrete constitutive relationship can better meet the requirements of analyzing bearing capacity of recycled concrete filled circular steel tubular columns under compressive Loading by using ABAQUS. Through the simulation experiment, it is useful for us to obtain the ultimate reliable bearing capacity of the similar structure member.


2012 ◽  
Vol 166-169 ◽  
pp. 514-519
Author(s):  
Jian Wen Zhang ◽  
Shi Hui Guo

Finite element analysis method of steel reinforced lightweight concrete pull-out specimens is exploded based on the test results. Spring element and local bond slip constitutive relation are introduced in analysis so as to consider the interfacial bond-slip between steel and lightweight concrete. Element tributary area and flange or web position should be taken into account in order to confirm the spring element real constant. Analysis results indicate that specimens bearing capacity and deformation can be well simulated adopting the stated method and constitutive relationship.


Sign in / Sign up

Export Citation Format

Share Document