The Research on the Application of the Steel Slag Produced by the Converters of Jigang Group Co. Ltd on Base Course

2012 ◽  
Vol 178-181 ◽  
pp. 1699-1705
Author(s):  
Fa Liang Lu ◽  
Jin Li

To test and inspect the chemical compositions and mechanical properties of the steel slag produced by the converters of Jigang Group co. ltd, and study the feasibility of using the steel slag as base course material. Prepare cement stabilized steel slag specimens with different contents of cement mixed for the unconfined compressive strength test. Determine through test its strength after 7 days and 28 days and its water stability after 7 days’ soaking. Prepare in the same method of two different kinds of cement and coal ash stabilized specimens with different contents of coal ash mixed for the unconfined compressive strength test, to test its strength and water stability. The comparison on mechanical property with cement stabilized macadam indicates that the cement stabilized steel slag and cement with coal ash stabilized steel slag both have favorable mechanical property and water stability and the steel slag produced by the converters of Jigang Group co. ltd can be popularized for use as base course material.

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Chee-Ming Chan ◽  
Ainun Nazhirin Abdul Jalil

Regular dredging is necessary for the development of coastal regions and the maintenance of shipping channels. The dredging process dislodges sediments from the seabed, and the removed materials, termed dredged marine soils, are generally considered a geowaste for dumping. However, disposal of the dredged soils offshores can lead to severe and irreversible impact on the marine ecosystem, while disposal on land often incurs exorbitant costs with no guarantee of zero-contamination. It is therefore desirable to reuse the material, and one option is solidification with another industrial waste, that is, steel slag. This paper describes the exploratory work of admixing dredged marine soil with activated steel slag for improvement of the mechanical properties. An optimum activation concentration of NaOH was introduced to the soil-slag mixture for uniform blending. Specimens were prepared at different mix ratios then left to cure for up to 4 weeks. The unconfined compressive strength test was conducted to monitor the changes in strength at predetermined intervals. It was found that the strength does not necessarily increase with higher steel slag content, indicating an optimum slag content required for the maximum solidification effect to take place. Also, regardless of the slag content, longer curing time produces greater strength gain. In conclusion, steel slag addition to dredged sediments can effectively strengthen the originally weak soil structure by both the “cementation” and “filler” effects, though the combined effects were not distinguished in the present study.


2010 ◽  
Vol 168-170 ◽  
pp. 931-935 ◽  
Author(s):  
Tao Cheng ◽  
Ke Qin Yan

Mechanics properties of lime-steel slag stabilized soil for pavement structures are investigated. Firstly, the chemical composition of the fine grain steel slag is analyzed by spectral analysis test. In view of the materials compositions, 5 kinds of mix proportion projects are defined. Compaction tests of all mix proportion projects are carried out in different water conditions to obtain the optimum moisture contents. Then the optimum mix proportion project is demarcated by the unconfined compressive strength test and the compression rebound modulus test. Finally, the pavement structures design for a highway of lime-steel slag stabilized soil road sub-base is made. As comparisons, the pavement structures of other types of lime industrial wastes stabilized soil road sub-base are computed. It is shown that lime- steel slag stabilized soil is suitable for flexible pavement or semi-rigid pavement because of its good strength and rigidity which can effectively reduce thickness of the lower pavement and basic deflection.


1996 ◽  
Vol 1 ◽  
pp. 279-288
Author(s):  
Masahiko MIURA ◽  
Kozo OKUDA ◽  
Koji ASANO ◽  
Masami KATO

2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Oladapo S Abiola ◽  
Reece Wilson ◽  
Anthony Barnard ◽  
Shaun Hattingh ◽  
William K Kupolati ◽  
...  

Pavement rehabilitation where the material in the existing pavement is recycled in-situ with bitumen will sustain the environment with conservation of natural aggregates, reduction in noise, dust emission and traffic disruption. This study investigate the effects of a native South African granular material stabilized with cement and bitumen emulsion as a base layer in pavement construction. The material stabilized with cement-bitumen emulsion (2-3%) was subjected to Unconfined Compressive Strength (UCS) and Indirect Tensile Strength (ITS) tests for 1, 4, 7 and 28 days curing. The UCS and ITS requirement was evaluated with respect to a base layer for design traffic application of less than six million equivalent single axles. The results of UCS and ITS tests for the stabilized material showed improved strength and have the potential for use as a base course material for the design traffic. The result revealed that 2.5% cement and bitumen emulsion meets the minimum strength characteristics for the base layer. Relative to 2% cement and 2% bitumen emulsion, ITS obtained for 4 and 7 days of curing increased approximately by 24%, 41% and 24%, 53% respectively. Models for UCS in terms of ITS was developed for cement and bitumen emulsion which will make one test among the two sufficient to indicate the strength of cement and bitumen emulsion stabilized materials at the mix design level. Bitumen stabilization is a quick construction method, with lower cost than reconstruction and good for rehabilitation. Keywords— bitumen emulsion, cement, granular, indirect tensile strength unconfined compressive strength. 


Sign in / Sign up

Export Citation Format

Share Document