maximum particle
Recently Published Documents


TOTAL DOCUMENTS

121
(FIVE YEARS 44)

H-INDEX

13
(FIVE YEARS 3)

2022 ◽  
Vol 12 (1) ◽  
pp. 447
Author(s):  
Shuya Li ◽  
Tiancheng Wang ◽  
Hao Wang ◽  
Mingjie Jiang ◽  
Jungao Zhu

Shear strength is an essential index for the evaluation of soil stability. Test results of the shear strength of scaled coarse-grained soil (CGS for short) are usually not able to accurately reflect the actual properties and behaviors of in situ CGS due to the scale effect. Therefore, this study focuses on the influence of the scale effect on the shear strength of scaled CGS, which has an important theoretical significance and application for the strength estimation of CGS in high earth-rock dam engineering. According to previous studies, the main cause of the scale effect for scaled CGS is the variation of the gradation structure as well as the maximum particle size (dmax), in which the gradation structure as a characteristic parameter can be expressed by the gradation area (S). A total of 24 groups of test soil samples with different gradations were designed by changing the maximum particle size dmax and gradation area S. Direct shear tests were conducted in this study to quantitatively explore the effect of the gradation structure and the maximum particle size on the shear strength of CGS. Test results suggest that the shear strength indexes (i.e., the cohesion and internal friction angle) of CGS present an increasing trend with the improvement of the maximum particle size dmax, and thus a logarithmic function relationship among c, φ, and dmax is presented. Both cohesion (c) and internal friction angle (φ) are negatively related to the gradation area (S) in most cases. As a result, an empirical relationship between c, φ, and S is established based on the test results. Furthermore, a new prediction model of shear strength of CGS considering the scale effect is proposed, and the accuracy of this model is verified through the test results provided by relevant literature. Finally, the applicability of this model to different types of CGS is discussed.


2022 ◽  
Vol 924 (2) ◽  
pp. 45
Author(s):  
Hiromasa Suzuki ◽  
Aya Bamba ◽  
Ryo Yamazaki ◽  
Yutaka Ohira

Abstract Supernova remnants (SNRs) are thought to be the most promising sources of Galactic cosmic rays. One of the principal questions is whether they are accelerating particles up to the maximum energy of Galactic cosmic rays (∼PeV). In this work, a systematic study of gamma-ray-emitting SNRs is conducted as an advanced study of Suzuki et al. Our purpose is to newly measure the evolution of maximum particle energies with increased statistics and better age estimates. We model their gamma-ray spectra to constrain the particle-acceleration parameters. Two candidates of the maximum energy of freshly accelerated particles, the gamma-ray cutoff and break energies, are found to be well below PeV. We also test a spectral model that includes both the freshly accelerated and escaping particles to estimate the maximum energies more reliably, but no tighter constraints are obtained with current statistics. The average time dependences of the cutoff energy (∝t −0.81±0.24) and break energy (∝t −0.77±0.23) cannot be explained with the simplest acceleration condition (Bohm limit) and require shock–ISM (interstellar medium) interaction. The average maximum energy during lifetime is found to be ≲20 TeV ( t M / 1 kyr ) − 0.8 with t M being the age at the maximum, which reaches PeV if t M ≲ 10 yr. The maximum energies during lifetime are suggested to have a variety of 1.1–1.8 dex from object to object. Although we cannot isolate the cause of this variety, this work provides an important clue to understanding the microphysics of particle acceleration in SNRs.


2021 ◽  
Vol 923 (2) ◽  
pp. 194
Author(s):  
Alice K. Harding ◽  
Christo Venter ◽  
Constantinos Kalapotharakos

Abstract Air-Cherenkov telescopes have detected pulsations at energies above 50 GeV from a growing number of Fermi pulsars. These include the Crab, Vela, PSR B1706−44, and Geminga, with the first two having pulsed detections above 1 TeV. In some cases, there appears to be very-high-energy (VHE) emission that is an extension of the Fermi spectra to high energies, while in other cases, additional higher-energy spectral components that require a separate emission mechanism may be present. We present results of broadband spectral modeling using global magnetospheric fields and multiple emission mechanisms that include synchro-curvature (SC) and inverse Compton scattered (ICS) radiation from accelerated particles (primaries) and synchrotron self-Compton (SSC) emission from lower-energy pairs. Our models predict three distinct VHE components: SC from primaries whose high-energy tail can extend to 100 GeV, SSC from pairs that can extend to several TeV, and ICS from primary particles accelerated in the current sheet that scatter pair synchrotron radiation, which appears beyond 10 TeV. Our models suggest that H.E.S.S.-II and MAGIC have detected the high-energy tail of the primary SC component that produces the Fermi spectrum in Vela, Geminga, and PSR B1706−44. We argue that the ICS component peaking above 10 TeV from Vela has been seen by H.E.S.S. Detection of this emission component from the Crab and other pulsars is possible with the High Altitude Water Cherenkov Observatory and Cherenkov Telescope Array, and will directly measure the maximum particle energy in pulsars.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jan Andreas Ruland ◽  
Annika Marie Krüger ◽  
Kerstin Dörner ◽  
Rohan Bhatia ◽  
Sabine Wirths ◽  
...  

AbstractRibosomal biogenesis has been studied by biochemical, genetic and electron microscopic approaches, but live cell data on the in vivo kinetics are still missing. Here we analyse the export kinetics of the large ribosomal subunit (pre-60S particle) through single NPCs in human cells. We established a stable cell line co-expressing Halo-tagged eIF6 and GFP-fused NTF2 to simultaneously label pre-60S particles and NPCs, respectively. By combining single molecule tracking and super resolution confocal microscopy we visualize the dynamics of single pre-60S particles during export through single NPCs. For export events, maximum particle accumulation is found in the centre of the pore, while unsuccessful export terminates within the nuclear basket. The export has a single rate limiting step and a duration of ∼24 milliseconds. Only about 1/3 of attempted export events are successful. Our results show that the mass flux through a single NPC can reach up to ~125 MDa·s−1 in vivo.


2021 ◽  
Vol 13 (20) ◽  
pp. 11239
Author(s):  
Xiaoping Ji ◽  
Honglei Lu ◽  
Cong Dai ◽  
Yonggen Ye ◽  
Zhifei Cui ◽  
...  

This paper presents a study of the properties of soil–rock mixtures (SRM) prepared by the vibration compaction method. First, the results of laboratory experiments and field tests are compared to determine the reasonable parameters of the vibration compaction method (VCM) for soil–rock mixtures. The compaction characteristics, CBR, and resilient modulus of the laboratory-prepared soil–rock mixtures by the static pressure compaction method (SPCM) and vibration compaction method are compared. The effects of the soil to rock ratio and the maximum particle size and gradation on the compaction characteristic, resilient modulus and CBR of soil–rock mixtures prepared by the vibration compaction method are investigated. Finally, field measurements are subsequently conducted to validate the laboratory investigations. The results show that the reasonable vibration frequency, exciting force, and static surface pressure of the vibration compactor for soil–rock mixtures are recommended as 25 Hz, 5.3 kN, and 154.0~163.2 kPa, respectively. Soil–rock mixtures prepared by vibration compaction method has smaller optimum water content and gradation variation and larger density than specimens prepared by the static pressure compaction method, and the CBR and resilient modulus are 1.46 ± 0.02 and 1.16 ± 0.03 times those of specimens prepared by the static pressure compaction method, respectively. The ratio of soil to rock, followed by the maximum particle size, lead obvious influences on the properties of soil–rock mixtures. Moreover, the results show that the CBR and resilient modulus of soil–rock mixtures prepared by vibration compaction method have a correlation of 86.9% and 89.1% with the field tests, respectively, which is higher than the static pressure compaction method.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yao Li ◽  
Jiaping Li ◽  
Tantan Zhu ◽  
Kuan Han

AbstractThe 2–2.5 times the simulated sand diameter is widely accepted in giving reasonable DEM simulation results for geotechnical testing. However, it neglects the effect of a specimen height to maximum particle diameter ratio in a specific laboratory test, which may lead to a strong stress concentration and flawed simulations. This study compared laboratory simple shear tests with corresponding DEM simulations with different particle sizes. The DEM model used clump rings to simulate physical rings in the test, and decreased the additional stress applied by the widely used wall-type rings. Results showed that (1) DEM models with tested particle size and twofold sand particle size (1D and 2D tests) can better capture the tested stress–strain behavior, volumetric changes, and noncoaxiality, the 4D model has an asymmetrical distribution of contact force and contact number, indicating the specimen is inhomogeneous and has a strong stress concentration. (2) a specimen height to maximum particle diameter ratio smaller than 10 (it is greater than 10 in the ASTM D6528) could provide reasonable macro-meso mechanical behaviors. Similar studies should be carried out after trial tests on determining a reasonable specimen height to maximum particle diameter ratio under the guidance of ASTM D6528.


2021 ◽  
Author(s):  
Daniele Agostinelli ◽  
Gwynn J Elfring ◽  
Mattia Bacca

Receptor-mediated endocytosis is the primary process for nanoparticle uptake in cells and one of the main entry mechanisms for viral infection. The cell membrane adheres to the particle (nanoparticle or virus) and then wraps it to form a vesicle delivered to the cytosol. Previous findings identified a minimum radius for a spherical particle below which endocytosis cannot occur. This is due to the insufficient driving force, from receptor-ligand affinity, to overcome the energy barrier created by membrane bending. In this paper, we extend this result to the case of clathrin-mediated endocytosis, which is the most common pathway for virus entry. Moreover, we investigate the effect of ligand inhibitors on the particle surface, motivated by viral an- tibodies, peptides or phage capsids nanoparticles. We determine the necessary conditions for endocytosis by considering the additional energy barrier due to the membrane bending to wrap such inhibiting protrusions. We find that the density and size of inhibitors determine the size range of internalized particles, and endo- cytosis is completely blocked above critical thresholds. The assembly of a clathrin coat with a spontaneous curvature increases the energy barrier and sets a maximum particle size (in agreement with experimental observations on smooth particles). Our investigation suggests that morphological considerations can inform the optimal design of neutralizing viral antibodies and new strategies for targeted nanomedicine.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1767
Author(s):  
Afni Restasari ◽  
Luthfia Hajar Abdillah ◽  
Retno Ardianingsih ◽  
Hamonangan Rekso Diputro Sitompul ◽  
Rika Suwana Budi ◽  
...  

An alarming, asymmetric flame in rocket combustion originates from a composite solid propellant (CSP) containing defects. The defects are the result of a composition that exceeds the maximum particle packing density. Based on the structure analysis of CSP, the addition of plasticizer causes the correlation between the viscosity of CSP slurry and particle packing density to become uncertain. This work aims to investigate the influence of thixotropic behavior on the maximum particle packing density of CSP. A CSP with different thixotropic behavior was successfully produced using aluminum/plasticizer dioctyl adipate (DOA) of 12–24. During the curing process, viscosity and stress–growth were investigated. The structure of the CSP was defined using X-ray radiography. It is remarkably observed that the peak of thixotropy occurred at the 15th minute of the curing process. The particle packing density of CSP can be decisive for the relative viscosity at the peak time of thixotropic behavior. The CSP with the highest relative viscosity at the peak time was revealed to have voids in the upper part of the CSP. Thus, this parameter was proven to change the preceding parameter, viscosity that was measured at the end of mixing. Based on the stress–growth analysis, it is conceivable that the mechanism involves the time-dependent diffusion of DOA in weakening aluminum agglomerates.


2021 ◽  
Vol 13 (9) ◽  
pp. 168781402110449
Author(s):  
Gen Jin ◽  
Zihao Zhao ◽  
Binbin Liu ◽  
Wenyuan Cun ◽  
Zhengda Zhao ◽  
...  

In this work, we designed a particle damper which can be conveniently clamped on to a pipeline without affecting the existing structure, showing a promising application in vibration reduction of real aircraft. Based on the designed particle damper, the impact of particle filling rate on the vibration reduction effect, the effect of EDEM simulation on the energy consumption of particles in the vibration process of the damper, and the result of actual vibration reduction test of particle damper installed on hydraulic pipeline were investigated. It is found that the vibration of the pipeline decreases first and then increases with the increase of particle filling rate. The particle filling rate corresponding to the maximum particle energy consumption rate is consistent with that of the minimum pipeline vibration acceleration during the test, that is, from 94.9% to 97.9%. The simulation results are in good agreement with the test results. Moreover, the vibration of the hydraulic pipeline and actual aircraft pipeline are both obviously suppressed after the installation of the particle damper. These results fully demonstrate the effectiveness and practicability of the aircraft pipeline particle damper.


Sign in / Sign up

Export Citation Format

Share Document