Improvement of Corrosion Resistance of Rare Earth Element (REE)-Based Anodic Oxidation Coating on AZ91D Magnesium Alloy

2012 ◽  
Vol 187 ◽  
pp. 210-214 ◽  
Author(s):  
M.Z.M. Zain ◽  
S. Illias ◽  
M. Mat Salleh ◽  
K. Azwan Ismail ◽  
Z. Nooraizedfiza

Anodization is a useful technique for forming protective films on magnesium alloys and improves its corrosion resistance. Based on the rare earth metal (REE) salt solution, the optimum parameter was selected by comparing the anti-corrosion property of anodic film. The structure, component and surface morphology of anodic film and cross-section were analyzed using X-ray diffraction (XRD) and scanning electron microscopy (SEM) coupled with Energy Dispersive Spectroscopy (EDS). The corrosion behavior was evaluated by immersion test. In this paper, a dense anodic film approximately 20 µm thick was prepared on a AZ91D magnesium alloy through anodic oxidation coating. The results show that the anodic films were mainly composed of Mg17Al12, Mg17La2, MgO and amorphous compounds. The best corrosion resistance was obtained with specimen anodized in solution containing both lanthanum nitrate and magnesium, whose corrosion resistance is approximately 3 times higher than that of as-received AZ91D magnesium alloy.


2015 ◽  
Vol 44 (3) ◽  
pp. 521-526 ◽  
Author(s):  
Liang Chenghao ◽  
Wang Shusen ◽  
Huang Naibao ◽  
Zhang Zhihong ◽  
Zhang Shuchun ◽  
...  


2011 ◽  
Vol 179-180 ◽  
pp. 757-761 ◽  
Author(s):  
Kai Jin Huang ◽  
Hou Guang Liu ◽  
Chang Rong Zhou

To improve the corrosion property of magnesium alloys, Zr-based amorphous composite coatings have been fabricated on AZ91D magnesium alloy by laser cladding using mixed powders Zr55Al10Ni5Cu30/SiC. The microstructure of the coating was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The corrosion resistance of the coatings was tested in 3.5wt.% NaCl solution. The results show that the coatings mainly consist of amorphous and different crystalline phases. The coatings compared with AZ91D magnesium alloy exhibit good corrosion resistance because of the presence of the amorphous phase in the coatings.



2010 ◽  
Vol 148-149 ◽  
pp. 1003-1006
Author(s):  
Xiao Chun Ma ◽  
Tao Li ◽  
Yu Ping Ni

The effect of α-Al2O3 nano-additives on anodic oxide film-forming and film performance was studied. The morphology and phase compositions of the anodic oxide films were analyzed by scanning electronic microscope (SEM) and X-ray diffraction (XRD). The corrosion resistance of the anodic films with nano-Al2O3 was investigated by immersion test and potentiodynamic polarization technique. The results show that anodic oxide films mainly consists of Mg, Al12Mg17, γ-Al2O3, a little of Si and α-Al2O3. The corrosion resistance property of magnesium alloy can be improved with the addition of α-Al2O3 nano-additives.



2010 ◽  
Vol 143-144 ◽  
pp. 758-762
Author(s):  
Kai Jin Huang ◽  
Hou Guang Liu ◽  
Chang Rong Zhou

To improve the corrosion property of magnesium alloys, Mg-based amorphous composite coatings have been fabricated on AZ91D magnesium alloy by laser cladding using mixed powders Mg65Cu25Y10/SiC. The microstructure of the coating was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The corrosion resistance of the coatings was tested in 3.5wt.% NaCl solution. The results show that the coatings mainly consist of amorphous and different crystalline phases. The coatings compared to AZ91D magnesium alloy exhibit good corrosion resistance because of the presence of the amorphous phase in the coatings.



2012 ◽  
Vol 576 ◽  
pp. 438-441 ◽  
Author(s):  
N.F.W.M. Sidik ◽  
M.Z.M. Zamzuri ◽  
M. Mat Salleh ◽  
Khairul Azwan Ismail

Anticorrosive oxide films were successfully prepared on AZ91D magnesium alloy by chemical conversion coating in La (NO3)3 electrolytes with and without NaVO3. The morphologies and chemical composition were characterized by optical microscope, scanning electron microscope (SEM) and energy dispersive analysis (EDX). The corrosion resistances of the oxide films were evaluated by salt immersion test. The result showed that the oxide film formed in electrolyte with NaVO3 is successful in providing superior corrosion resistance for AZ91D magnesium alloy.



2005 ◽  
Vol 20 (10) ◽  
pp. 2763-2771 ◽  
Author(s):  
Houng-Yu Hsiao ◽  
Wen-Ta Tsai

The anodic films formed on AZ91D magnesium alloy after heat treatment were analyzed and their electrochemical properties were investigated. The results showed that the cooling rate had a significant influence on the microstructure evolution of the AZ91D magnesium alloy after solution heat treatment at 440 °C for 20 h in N2 atmosphere. A single-phase microstructure was observed when the alloy was quenched in water after solution heat treatment. However, a duplex structure consisting of both α and β phases was found if the solution-annealed alloy was cooled in air. The differences in microstructure of the heat treated AZ91D magnesium alloy gave rise to a significant change in the property of the anodic film formed in 3 M KOH + 0.21 M Na3PO4 + 0.6 M KF + 0.15 M Al(NO3)3 electrolyte. During the early stage of anodization, for the as-cast alloy, inhomogeneous anodic films were formed exhibiting relative rough surface appearances. A rather smooth anodic film was formed for the solution-annealed AZ91D magnesium alloy either followed by air cooling or water-quenched. The surface and cross section appearance was almost the same regardless of the prior heat treatment after anodizing for 20 min. The corrosion resistances of the various anodized AZ91D magnesium alloy were evaluated and compared by employing electrochemical impedance spectroscopy (EIS). The results demonstrate that the anodic film formed on the water-quenched AZ91D magnesium alloy had a slightly higher polarization resistance than that formed on the as-cast alloy. The highest polarization resistance of anodic film was found for that formed on annealed and air-cooled alloy. The presence of Al-rich β phase on the surface gave rise to the formation of a more protective anodic film which consisted of a great amount of Al2O3.





2013 ◽  
Vol 594-595 ◽  
pp. 571-574
Author(s):  
Mat Akhir Khalid Azadi ◽  
M.Z.M. Zamzuri ◽  
S. Norbahiyah ◽  
Mohd Nazree Derman

Oxide coatings on AZ91D magnesium alloy were prepared using anodizing technique with 10mA/cm2 current density for 5 minutes in electrolyte containing Mg (NO3)2 with NaVO3 as an additive. The corrosion behaviors of different coatings condition were evaluated by immersion test in 5.0% NaCl electrolyte for 72 hours. The microstructures were analyzed by Optical Microscope (OM) and Scanning Electron Microscope (SEM). It was found that coatings with the addition of NaVO3 produced homogeneous primary α-matrix and bigger β-phase (Mg17Al12) compared to untreated AZ91D magnesium alloy. The oxide film formed by anodizing in electrolyte with NaVO3 enhances the corrosion resistance of the AZ91D magnesium alloy significantly.



2014 ◽  
Vol 879 ◽  
pp. 38-42
Author(s):  
Mat Akhir Khalid Azadi ◽  
M.Z.M. Zamzuri ◽  
S. Norbahiyah ◽  
M.R.N. Liyana ◽  
M. Marina ◽  
...  

Oxide coatings on AZ91D magnesium alloy were prepared using anodizing technique with 10mA/cm2 current density for 5 minutes in electrolyte containing La (NO3) and Mg (NO3),with NaVO3 as an additive. The corrosion behaviors of different coatings condition were evaluated by immersion test in 5.0% NaCl electrolyte for 72 hours. The microstructures were analyzed by Optical Microscope (OM) and Scanning Electron Microscope (SEM). It was found that coatings with the addition of NaVO3 produced homogeneous primary α-matrix and bigger β-phase (Mg17Al12) compared to untreated AZ91D magnesium alloy. The oxide film formed by anodizing in electrolyte with NaVO3 enhances the corrosion resistance of the AZ91D magnesium alloy significantly



Sign in / Sign up

Export Citation Format

Share Document