superior corrosion resistance
Recently Published Documents


TOTAL DOCUMENTS

149
(FIVE YEARS 52)

H-INDEX

15
(FIVE YEARS 6)

2022 ◽  
Vol 8 ◽  
Author(s):  
Yashan Feng ◽  
Lei Chang ◽  
Shijie Zhu ◽  
Yongxin Yang ◽  
Baoli Wei ◽  
...  

The uncontrollable rapid degradation rate of the Mg alloy substrate limited its clinical application, and implant-associated infections have been reported to be the main reason for the secondary surgery of orthopedic implantation. The aim of this study was to produce a multifunctional coating on magnesium-based alloys that have improved corrosion resistance, bioactivity, and antibacterial properties through the preparation of polyelectrolytic multilayers (PEMs) consisting of chitosan (CS) and sodium hyaluronate (HA) on silane-modified strontium-substituted hydroxyapatite (hereafter referred to as Bil (SH + CS)/SrHA). The multifunctional coatings were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). The results showed the polyelectrolyte complex SH/CS layer to be uniformly and tightly attached on to the surface of silane-treated SrHA. At the same time, a potentiodynamic polarization test and hydrogen evolution test showed the Bil (SH + CS)/SrHA coatings to exhibit superior corrosion resistance than bulk Mg-based alloys. The results of the cell–surface interactions revealed Bil (SH + CS)/SrHA coatings to be in favor of cell initial adhesion and more beneficial to the proliferation and growth of cells with the processing of co-culture. In addition, antibacterial tests demonstrated the strong bactericidal effect of Bil (SH + CS)/SrHA coatings against both Escherichia coli (E. coli) and Staphylococcus (S. aureus), suggesting that Bil (SH + CS)/SrHA coatings can successfully achieve multifunctionality with enhanced corrosion resistance, biocompatibility, and antibacterial properties.


CORROSION ◽  
10.5006/3767 ◽  
2022 ◽  
Author(s):  
Malvika Karri ◽  
Amit Verma ◽  
J.B. Singh ◽  
Sunil Kumar Bonagani ◽  
U.K. Goutam

This work seeks to understand the underlying mechanism involved in passivity of Ni-Cr-Mo alloys in a less concentrated HCl solution (1M) by systematically varying contents of Cr and Mo solutes in model Ni-Cr-Mo alloys. Corrosion behaviour was evaluated based on potentiodynamic polarisation tests carried out in conjunction with electrochemical impedance and x-ray photoelectron spectroscopies of passive films that formed on alloys during their exposure to the HCl solution. Results have shown that an increase in Mo alone is not sufficient to improve the corrosion resistance of the alloys at lower concentrations of HCl. Optimum concentrations of Cr and Mo solutes have been found to be in the vicinity of ~17 wt.% Cr and ~19 wt.% Mo for superior corrosion resistance of the alloys. This was attributed to the protection of the Cr2O3 layer as a consequence of the enrichment of Mo6+ ions in the passive film in 1M HCl solution.


2021 ◽  
Vol 1 ◽  
pp. 100006
Author(s):  
Emilie Hørdum Valente ◽  
Venkata Karthik Nadimpalli ◽  
Thomas L. Christiansen ◽  
David Bue Pedersen ◽  
Marcel A.J. Somers

2021 ◽  
Vol 63 (12) ◽  
pp. 1116-1123
Author(s):  
Tushar Sonar ◽  
Visvalingam Balasubramanian ◽  
Thiruvenkatam Venkateswaran ◽  
Dhenuvakonda Sivakumar ◽  
Sergey Konovalov

Abstract The gas tungsten constricted arc welding (GTCAW) process was used to join thin Su-718 alloy sheets to minimize alloying segregation and Laves phase precipitation in the fusion zone (FZ). The potentiodynamic corrosion behavior of GTCAW Su-718 alloy joints was studied and correlated to the microstructural features of welds. The potentiodynamic corrosion test was done in a 3.56 wt.-% NaCl solution to determine the corrosion rate of Su-718 alloy joints. The optical microscopy (OM) technique was used to analyze the microstructure of corroded weldments. The scanning electron microscopy (SEM) technique was used to study the Laves phase development in FZ. The SEM X-ray energy dispersive spectroscopy (EDS) technique was used to for elemental mapping of FZ. The corrosion resistance of Su-718 joints is inversely proportional to the precipitation of Laves phase in FZ. The GTCA welded Su-718 alloy joints disclosed superior corrosion resistance for the joints with lower Laves phase precipitation. It is correlated to the refining of FZ microstructure, which aids in minimizing the Laves phase precipitation. The joints with higher Laves phase precipitation revealed inferior corrosion resistance. It is attributed to coarsening of FZ microstructure, which raises the alloying segregation and leads to depletion of alloying elements in FZ. The dendritic core regions showed severe corrosion compared to the interdendritic regions. The corrosion resistance of GTCA welded Su-718 joints is better than that of CC-GTAW and PC-GTGAW joints and comparable to that of EBW and LBW joints. It refers to the arc constriction and high frequency current pulsation.


Author(s):  
Zhenhua Chu ◽  
Shikun Teng ◽  
Yuyun Zhou ◽  
Xingwei Zheng ◽  
Jingxiang Xu ◽  
...  

In the present study, the corrosion resistance of amorphous coating and composite coatings in 3.5 wt.% NaCl, 0.5 M H2SO4 and 10 wt.% NaOH solution were studied. The composite coatings exhibit superior corrosion resistance. When the content of AT13 (Al2O3–13 wt.% TiO2)was 15 wt.%, the composite coating has the lowest corrosion current density (1.75×10-6 A cm-2), which is 5.14×10-5 A cm-2 for Fe-based metallic glassy coating, and the highest corrosion potential (-411 mV), which is -580 mV for Fe-based metallic glassy coating. The breakdown potential of the passivation film in 3.5 wt.% NaCl solution was much higher than that of 316L.The long-time immersion corrosion tests carried out on different coatings showed that the corrosion protection effect of coating was enhanced with the increase of the amount of AT13 added.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6957
Author(s):  
Xiaohui Han ◽  
Xiaoguang Sun ◽  
Gangqing Li ◽  
Shiming Huang ◽  
Ping Zhu ◽  
...  

Aluminum alloy structures may be damaged due to wear or corrosion while in service. These damages will bring about huge financial costs, as well as a huge amount of energy consumption. There is an urgent need to search for an appropriate repair method in order to solve this problem. In this research, the cold spray process was used to repair the damages by using a mixture of powders with Al and Al2O3. A 7N01-T4 aluminum alloy plate with a factitious pit was regarded as the damaged sample. The microstructure, mechanical properties, and corrosion behavior were studied. The results showed that there were no visible perforative pores or cracks in the repaired areas. The microhardness of the repaired areas was in the range of 57.4–63.2 HV and was lower than that of the 7N01-T4 aluminum alloy. The tensile strength of the repaired samples was markedly improved compared with the unrepaired samples. The alternate immersion test results indicated that the repaired samples had the lowest rate of mass loss compared with 7N01-T4 and the unrepaired samples. After alternate immersion tests for 504 h, the repaired samples were covered with dense corrosion products. The repaired samples had a superior corrosion resistance compared to that of 7N01-T4. Thus, the cold spray process is a method of repairing damage in aluminum alloy structures.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6226
Author(s):  
Dong Peng ◽  
Dalong Cong ◽  
Kaiqiang Song ◽  
Xingxing Ding ◽  
Xuan Wang ◽  
...  

The effects of three pyridine derivative additives, 4-hydroxypyridine, 4-picolinic acid, and 4-cyanopyridine, on Al-Mn coatings were investigated in 1-ethyl-3-methylimidazolium chloride-AlCl3-MnCl2 (EMIC-AlCl3-MnCl2) ionic liquids. The smooth mirror-like bright Al-Mn coatings were obtained only in the EMIC-AlCl3-MnCl2 ionic liquids containing 4-cyanopyridine, while the matte Al-Mn coatings were electrodeposited from EMIC-AlCl3-MnCl2 without additives or containing either 4-hydroxypyridine or 4-picolinic acid. The scanning electron microscope and X-ray diffraction showed that the bright Al-Mn coatings consisted of nanocrystals and had a strong (200) preferential orientation, while the particle size of matte Al-Mn coatings were within the micron range. The brightening mechanism of 4-cyanopyridine is due to it being adsorbed onto the cathode to produce the combined effect of (1) generating an overpotential to promote Al-Mn nucleation; (2) inhibiting the growth of the deposited nuclei and enabling them grow preferentially, making the coating composed of nanocrystals and with a smooth surface. The brightening effect of 4-cyanopyridine on the Al-Mn coatings was far better than that of the 4-hydroxypyridine and the 4-picolinic acid. In addition, the bright Al-Mn coating was prepared in a bath with 6 mmol·L−1 4-cyanopyridine and displayed superior corrosion resistance relative to the matte coatings, which could be attributed to its unique nanocrystalline structure that increased the number of grain boundaries and accelerated the formation of the protective layer of the corrosion products.


Sign in / Sign up

Export Citation Format

Share Document