Vibration Polishing Edge Preparation for Cemented Carbide Inserts

2012 ◽  
Vol 201-202 ◽  
pp. 1174-1177
Author(s):  
Jiao Wang ◽  
Hao Wang ◽  
Ai Bing Yu

Micro-cracks on cutting edge will cause early breakages on cutting tools, accelerate tool wear and reduce cemented carbide tool life. Edge preparation can improve the cutting edge quality. Vibration polishing experiments were carried out for cemented carbide inserts edge preparation. Inserts and fixtures were put into the vibration polishing equipment which forced abrasive particles to collide and polish inserts. Edge preparation for fixed type insert and free type insert were compared with three sizes of abrasive particles. And the polishing time was changed for each testing cases. Experiments were carried out by altering polishing time, abrasive particle size and tool clamping way to determine the optimum technology of vibration polishing edge preparation. The experimental results showed that edge breakage numbers of insert significantly reduced. Smooth and round cutting edges were observed by optical microscope after edge preparation. Edge preparation experiments prove that edge preparation can change the cutting edge geometry and improve the cutting tool quality.

2017 ◽  
Vol 107 (06) ◽  
pp. 453-460
Author(s):  
E. Prof. Uhlmann ◽  
J. Bruckhoff

Angesichts steigender Anforderungen an Zerspanwerkzeuge nimmt die Schneidkantenpräparation einen immer größer werdenden Stellenwert ein, da sich so die Standzeit von Zerspanwerkzeugen erhöhen lässt. Die bisher eingesetzten Präparationsverfahren eignen sich meist nur für einfache Verrundungen an der Schneidkante. In umfangreichen Untersuchungen wurde die Eignung von Formschleifprozessen zur Herstellung definierter Schneidkantenmikrogeometrien anhand von Arbeitsergebnissen analysiert.   Due to increasing demands on cutting tools cutting edge preparation has a high priority because it influences the tool life. Current cutting edge preparation processes can only generate simple roundings on the cutting edge. By extensive investigations the suitability of form grinding processes for the production of defined microgeometries on the cutting edge was analysed.


Mechanik ◽  
2019 ◽  
Vol 92 (12) ◽  
pp. 827-829 ◽  
Author(s):  
Agata Felusiak ◽  
Martyna Wiciak-Pikuła ◽  
Tadeusz Chwalczuk ◽  
Piotr Kieruj ◽  
Paweł Twardowski

The paper presents the analysis of the influence of laser assisted machining (LAM) on various parameters of surface roughness of stainless steel. The tests were carried out for cemented carbide inserts with varying cutting parameters. In most cases, a significant reduction in the roughness parameters was observed using LAM.


Author(s):  
Raonei Alves Campos ◽  
Andre Contin ◽  
Vladimir Jesus Trava-Airoldi ◽  
Danilo Maciel Barquete ◽  
Evaldo José Corat

Author(s):  
Raonei Alves Campos ◽  
Andre Contin ◽  
Vladimir Jesus Trava-Airoldi ◽  
Danilo Maciel Barquete ◽  
Evaldo José Corat

2018 ◽  
Vol 178 ◽  
pp. 01014
Author(s):  
Ioan-Doru Voina ◽  
Stefan Sattel ◽  
Glad Contiu ◽  
Adrian Faur ◽  
Bogdan Luca

The improvement of the microgeometry became a subject of a great interest in cutting tools optimization. This paper approaches the process of cutting edge preparation of solid carbide reamers. It has been analyzed the evolution of cutting edge wear resistance in the material GGG 40 using the scanning electron microscope (SEM). The work also compared the rounded cutting edge reamers realized using wet abrasive jet machining with standard unprepared cutting edge. To obtain different microgeometries were experienced a number of machining strategies, which resulted in four combinations of roundness and forms for the cutting edge. In order to validate the results, the author studied the wear resistance during the reaming tests, the influence of prepared surface of the cutting edge on metallic coating layer adhesion. The final purpose was to determinate the optimal strategy of cutting edge preparation considering the evolution of wear during the reaming process.


Sign in / Sign up

Export Citation Format

Share Document