scholarly journals Reamers cutting edge preparation for improvement the GGG 40 machining

2018 ◽  
Vol 178 ◽  
pp. 01014
Author(s):  
Ioan-Doru Voina ◽  
Stefan Sattel ◽  
Glad Contiu ◽  
Adrian Faur ◽  
Bogdan Luca

The improvement of the microgeometry became a subject of a great interest in cutting tools optimization. This paper approaches the process of cutting edge preparation of solid carbide reamers. It has been analyzed the evolution of cutting edge wear resistance in the material GGG 40 using the scanning electron microscope (SEM). The work also compared the rounded cutting edge reamers realized using wet abrasive jet machining with standard unprepared cutting edge. To obtain different microgeometries were experienced a number of machining strategies, which resulted in four combinations of roundness and forms for the cutting edge. In order to validate the results, the author studied the wear resistance during the reaming tests, the influence of prepared surface of the cutting edge on metallic coating layer adhesion. The final purpose was to determinate the optimal strategy of cutting edge preparation considering the evolution of wear during the reaming process.

2017 ◽  
Vol 107 (06) ◽  
pp. 453-460
Author(s):  
E. Prof. Uhlmann ◽  
J. Bruckhoff

Angesichts steigender Anforderungen an Zerspanwerkzeuge nimmt die Schneidkantenpräparation einen immer größer werdenden Stellenwert ein, da sich so die Standzeit von Zerspanwerkzeugen erhöhen lässt. Die bisher eingesetzten Präparationsverfahren eignen sich meist nur für einfache Verrundungen an der Schneidkante. In umfangreichen Untersuchungen wurde die Eignung von Formschleifprozessen zur Herstellung definierter Schneidkantenmikrogeometrien anhand von Arbeitsergebnissen analysiert.   Due to increasing demands on cutting tools cutting edge preparation has a high priority because it influences the tool life. Current cutting edge preparation processes can only generate simple roundings on the cutting edge. By extensive investigations the suitability of form grinding processes for the production of defined microgeometries on the cutting edge was analysed.


2017 ◽  
Vol 12 (1) ◽  
pp. 45-51 ◽  
Author(s):  
E. Krebs ◽  
M. Wolf ◽  
D. Biermann ◽  
W. Tillmann ◽  
D. Stangier

2019 ◽  
Vol 46 ◽  
pp. 234-240 ◽  
Author(s):  
Tomáš Vopát ◽  
Štefan Podhorský ◽  
Martin Sahul ◽  
Marián Haršáni

2021 ◽  
Author(s):  
Dejin Lv ◽  
Yongguo Wang ◽  
Xin Yu ◽  
Han Chen ◽  
Yuan Gao

Abstract Cutting edge preparation has become more important for tool performance. The micro-shape, radius and surface topography of the cutting edge plays a significant role in the machining process. The cutting edge of solid carbide end mills have some micro-defects after grinding. For eliminating aforementioned problem, this study investigates drag finishing (DF) preparation for solid carbide end mills reconstruct cutting edge micro-geometry. This paper is to present the design of DF experimental set-up and analysis the characterization of various abrasive media (K3/600, K3/400, HSC 1/300 and HSO 1/100) on the evolution of the surface /roughness along the cutting edge. In parallel, the mechanism of material removal and the kinematics trajectory of the drag finishing are presented. In fact, the form factor (also called as “K-factor”) of the cutting edge micro-geometry is quantified. Comparing with four lapping media, the higher material removal rate (MRR) and the lower surface roughness are obtained by HSO 1/100 abrasive process. The results show that the cutting edge K-factor, MRR and surface topography are influenced by the abrasive particles size, composition and process time. The cutting edge micro-geometry is measured through Scanning Electron Microscopy (SEM) and 3D Optical measuring instrument.


Coatings ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 439 ◽  
Author(s):  
Tomas Zlamal ◽  
Ivan Mrkvica ◽  
Tomas Szotkowski ◽  
Sarka Malotova

The article deals with a determination of the influence of a cutting edge preparation on the quality and wear resistance of coated cutting tools. Cutting inserts made from a sintered carbide with a deposited layer of PVD coating were selected for measurement. Non-homogeneity caused by the creation of droplets arises in the application layer during the process of applying the coating by the PVD method. These droplets make the surface roughness of the PVD coating worse, increase the friction and thereby the thermal load of the cutting tool as well. Also, the droplets could be the cause of the creation and propagation of droplets in the coating and they can cause quick cutting tool wear during machining. Cutting edge preparations were suggested for the improvement of the surface integrity of deposited layers of PVD coating, namely the technology of drag finishing and abrasive jet machining. After their application, the areal surface roughness was measured on the surface of coated cutting inserts, the occurrence of droplets was tracked and the surface structure was explored. A tool-life test of cutting inserts was carried out for verification of the influence of surface treatment on the wear resistance of cutting inserts during the milling process. The cutting inserts with a layer of PVD coatings termed as samples A, B, and C were used for the tool-life test. The first sample, A, represented the coating before the application of cutting edge preparations and samples B and C were after the application of the cutting edge preparation. A carbon steel termed C45 was used for the milling process and cutting conditions were suggested. The visual control of surface of cutting inserts, intensity of wear and occurrence of thermal cracks in deposited PVD layers were the criterion for the evaluation of the individual tests.


2015 ◽  
Vol 105 (11-12) ◽  
pp. 805-811
Author(s):  
E. Uhlmann ◽  
D. Oberschmidt ◽  
A. Löwenstein ◽  
M. Polte ◽  
I. Winker

Die Prozesssicherheit beim Mikrofräsen lässt sich mit einer gezielten Schneidkantenverrundung erheblich steigern. Dabei werden durch verschiedene Präparationstechnologien unterschiedliche Geometrien und Einflüsse auf den Fräsprozess erzeugt. Der Fachbeitrag behandelt den Einsatz präparierter Mikrowerkzeuge in Zerspanversuchen, in denen auf die Zerspankräfte, den Verschleiß sowie die Oberflächengüten eingegangen wird.   Process reliability in micro milling can be increased by a defined cutting edge preparation. Different cutting edge preparations cause different effects on tool behavior in the downstream micro milling process. In this paper, the process forces, the tool wear and the surface quality of prepared micro milling tools are characterized in cutting tests.


2021 ◽  
Vol 111 (11-12) ◽  
pp. 833-839
Author(s):  
Kolb Moritz ◽  
Tim Mayer ◽  
Nico Rasenberger

Dieser Beitrag beschreibt, wie sich die Standzeit von Kreissägeblättern durch Schneidkantenpräparation gezielt beeinflussen lässt. Hierfür wurden zunächst einzelne Segmente aus einem Sägeblatt herausgetrennt und Einzahnproben mit variierenden Schneidenmikrogeometrien mittels Bürstspanen präpariert. Anschließend wurde das Einsatz- und Verschleißverhalten der zuvor hergestellten Proben in einem Kreissäge-Modellversuch untersucht.   This article describes how the service life of circular saw blades can be specifically influenced by cutting edge preparation. For this purpose, individual segments were first cut out of a saw blade. These single-tooth specimens with varying cutting edge microgeometries were prepared by abrasive brushing. Then the usage and wear behavior of the previously produced samples was investigated in a circular saw model test.


Sign in / Sign up

Export Citation Format

Share Document