crater wear
Recently Published Documents


TOTAL DOCUMENTS

138
(FIVE YEARS 23)

H-INDEX

18
(FIVE YEARS 2)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 524
Author(s):  
Shalina Sheik Muhamad ◽  
Jaharah A. Ghani ◽  
Che Hassan Che Haron ◽  
Hafizal Yazid

Cryogenic technique is the use of a cryogenic medium as a coolant in machining operations. Commonly used cryogens are liquid nitrogen (LN2) and carbon dioxide (CO2) because of their low cost and non-harmful environmental impact. In this study, the effects of machining conditions and parameters on the wear mechanism were analysed in the milling process of AISI 4340 steel (32 HRC) under cryogenic conditions using a multilayer coated carbide cutting tool (TiAlN/AlCrN). A field emission scanning electron microscope with energy-dispersive X-ray analysis was used to examine the wear mechanisms comprehensively. At low machining parameters, abrasion and adhesion were the major wear mechanisms which occurred on the rake face. Machining at high machining parameters caused the removal of the coating material on the rake face due to the high temperature and cutting force generated during the cutting process. In addition, it was found that continuously adhered material on the rake face would lead to crater wear. Furthermore, the phenomenon of oxidation was also observed when machining at high cutting speed, which resulted in diffusion wear and increase in the crater wear. Based on the relationship between the cutting force and cutting temperature, it can be concluded that these machining outputs are significant in affecting the progression of tool wear rate, and tool wear mechanism in the machining of AISI 4340 alloy steel.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1515
Author(s):  
Jinxing Wu ◽  
Lin He ◽  
Yanying Wu ◽  
Chaobiao Zhou ◽  
Zhongfei Zou ◽  
...  

Tool-chip friction increases cutting temperature, aggravates tool wear, and shortens the service life of cutting tools. A micro-groove design of the rake face can improve the wear performance of the tool. In this study, we used the finite element simulation “Deform” to obtain the temperature field distribution of the tool rake face. The size of the micro-groove was determined by selecting a suitable temperature field combined with the characteristics of tool–chip flow in the cutting process, and the tool was prepared using powder metallurgy. The three-direction cutting forces and tool tip temperature were obtained by a cutting test. Compared with the original turning tool, the cutting force and cutting temperature of the micro-groove tool were reduced by more than 20%, the friction coefficient was reduced by more than 14%, the sliding energy was reduced and the shear energy was greatly decreased. According to the analysis of tool wear by SEM (scanning electron microscope) and EDS (energy dispersive X-ray spectroscopy), the crater wear, adhesive wear and oxidation wear of the micro-groove tool were lower than those of the original turning tool. In particular, the change in the crater wear area on the rake face of the original tool and the micro-groove tool was consistent with the cutting temperature and the wear width of the flank face. On the whole, the crater wear area and the change rate of the crater wear area of the micro-groove tool were smaller. Due to the proper microgroove structure of the rake face, the tool-chip contact area decreased, and the second rake angle of the tool became larger. Hence, the tool-chip friction, cutting forces, cutting energy consumption were reduced, tool wear was improved, and the service life of the micro-groove tool was five times longer than that of the original tool.


2021 ◽  
Vol 9 (4B) ◽  
Author(s):  
Abidin Şahinoğlu ◽  
◽  
Mohammad Rafighi ◽  

The present study investigated the machinability aspects, namely, surface roughness, sound intensity, power consumption, and crater wear, during dry turning of hardened AISI 4140 steel (63 HRC) employing (TiCN/Al2O3/TiN) multilayer-coated carbide inserts under dry cutting condition. The relationship between machining parameters and output parameters was determined using the Taguchi design. The analysis of variance was employed to evaluate the contributions of input parameters on output parameters. The main effect plots illustrated the impacts of cutting speed, feed, and depth of cut on response variables. Results show that the feed was the most dominant factor that affects surface roughness. Increasing the feed value increases the surface roughness, power consumption, and sound intensity. In the other part of this study, the constant values for feed (0.3 mm/rev), depth of cut (0.7 mm), and cutting speed (150 m/min) have been selected to evaluate a tool life that has 0.3 mm crater wear criteria. The results indicated that multilayer-coated carbide inserts presented very good tool life and reached 0.3 mm in 90 min. The experimental study results showed that chipping and abrasion were found to be the significant wear mechanism during hard turning of AISI 4140 steel. The cutting speed was the most significant parameter on the tool wear, although high cutting speed results the good surface finish but adversely increases the tool crater wear.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7128
Author(s):  
Adel T. Abbas ◽  
Essam A. Al Bahkali ◽  
Saeed M. Alqahtani ◽  
Elshaimaa Abdelnasser ◽  
Noha Naeim ◽  
...  

This paper reports a fundamental investigation consisting of systematic trials into the response of Ti6Al4V alloy to high-speed machining using carbide inserts. It is a useful extension to work previously published, and aims at assessing the impact of the process parameters, depth of cut, cutting speed and feed rate in addition to cutting length, and their interrelations, on observed crater and flank wear and roughness of the machined surface. The results showed that abrasion was the most important flank wear mechanism at high speed. It also showed that increased cutting length accelerated crater wear more than exhibited flank wear and had considerable effect on surface roughness. In particular, crater wear increased by over 150% (on average), and flank wear increased by 40% (on average) when increasing cutting length from 40 to 120 mm. However, cutting the same length increased surface roughness by 50%, which helps explain how progression of tool wear leads to deteriorated surface quality. ANOVA was used to perform statistical analyses of the measured data and revealed that cutting length and depth of cut had the greatest effect on both crater and flank wear of the cutting tool. These results confirm that high-speed machining of Ti6Al4V alloy is a reliable process, with cutting speed identified as having a relatively small influence on the tool wear and resultant roughness of the machined surface relative to other parameters.


2021 ◽  
Author(s):  
Raqibah Najwa Mudzaffar ◽  
Mohamad Faiz Izzat Bahauddin ◽  
Hanisah Manshor ◽  
Ahmad Zahirani Ahmad Azhar ◽  
Nik Akmar Rejab ◽  
...  

Abstract The zirconia toughened alumina enhanced with titania and chromia (ZTA-TiO2-Cr2O3) ceramic cutting tool is a new cutting tool that possesses good hardness and fracture toughness. However, the performance of the ZTA-TiO2-Cr2O3 cutting tool continues to remain unknown and therefore requires further study. In this research, the wearing of the ZTA-TiO2-Cr2O3 cutting tool and the surface roughness of the machined surface of stainless steel 316L was investigated. The experiments were conducted where the cutting speeds range between 314 to 455 m/min, a feed rate from 0.1 to 0.15 mm/rev, and a depth of cut of 0.2 mm. A CNC lathe machine was utilised to conduct the turning operation for the experiment. Additionally, analysis of the flank wear and crater wear was undertaken using an optical microscope, while the chipping area was observed via scanning electron microscopy (SEM). The surface roughness of the machined surface was measured via portable surface roughness. The lowest value of flank wear, crater wear and surface roughness obtained are 0.044 mm, 0.45 mm2, and 0.50 µm, respectively at the highest cutting speed of 455 m/min and the highest feed rate of 0.15 mm/rev. The chipping area became smaller with the increase of feed rate from 0.10 to 0.15 mm/rev and larger when the feed rate decrease. This was due to the reduced vibrations at the higher spindle speed resulting in a more stable cutting operation, thereby reducing the value of tool wear, surface roughness, and the chipping area.


Author(s):  
Anshuman Das ◽  
Miyaz Kamal ◽  
Sudhansu Ranjan Das ◽  
Saroj Kumar Patel ◽  
Asutosh Panda ◽  
...  

AISI D6 (hardness 65 HRC) is one of the hard-to-cut steel alloys and commonly used in mould and die making industries. In general, CBN and PCBN tools are used for machining hardened steel but its higher cost makes the use for limited applications. However, the usefulness of carbide tool with selective coatings is the best substitute having comparable tool life, and in terms of cost is approximately one-tenth of CBN tool. The present study highlights a detailed analysis on machinability investigation of hardened AISI D6 alloy die steel using newly developed SPPP-AlTiSiN coated carbide tools in finish dry turning operation. In addition, a comparative assessment has been performed based on the effectiveness of cutting tool performance of nanocomposite coating of AlTiN deposited by hyperlox PVD technique and a coating of AlTiSiN deposited by scalable pulsed power plasma (SPPP) technique. The required number of machining trials under varied cutting conditions (speed, depth of cut, feed) were based on L16 orthogonal array design which investigated the crater wear, flank wear, surface roughness, chip morphology, and cutting force in hard turning. Out of the two cutting tools, newly-developed nanocomposite (SPPP-AlTiSiN) coated carbide tool promises an improved surface finish, minimum cutting force, longer tool life due to lower value of crater & flank wears, and considerable improvement in tool life (i.e., by 47.83%). At higher cutting speeds, the crater wear length and flank wear increases whereas the surface roughness, crater wear width and cutting force decreases. Chip morphology confirmed the formation of serrated type saw tooth chips.


Wear ◽  
2021 ◽  
pp. 204016
Author(s):  
Maiara Moreno ◽  
Jon M. Andersson ◽  
Robert Boyd ◽  
Mats P. Johansson-Jöesaar ◽  
Lars J.S. Johnson ◽  
...  

Wear ◽  
2021 ◽  
pp. 203998
Author(s):  
Alex Graves ◽  
Susanne Norgren ◽  
Wei Wan ◽  
Sandeep Singh ◽  
Mikael Kritikos ◽  
...  

2021 ◽  
Vol 5 (2) ◽  
pp. 34
Author(s):  
Guangxian Li ◽  
Ge Wu ◽  
Wencheng Pan ◽  
Rizwan Abdul Rahman Rashid ◽  
Suresh Palanisamy ◽  
...  

Polycrystalline diamond (PCD) tools are widely used in industry due to their outstanding physical properties. However, the ultra-high hardness of PCD significantly limits the machining efficiency of conventional abrasive grinding processes, which are utilized to manufacture PCD tools. In contrast, electrical discharge grinding (EDG) has significantly higher machining efficiency because of its unique material removal mechanism. In this study, the quality and performance of PCD tools machined by abrasive grinding and EDG were investigated. The performance of cutting tools consisted of different PCD materials was tested by high-speed turning of titanium alloy Ti6Al4V. Flank wear and crater wear were investigated by analyzing the worn profile, micro morphology, chemical decomposition, and cutting forces. The results showed that an adhesive-abrasive process dominated the processes of flank wear and crater wear. Tool material loss in the wear process was caused by the development of thermal cracks. The development of PCD tools’ wear made of small-sized diamond grains was a steady adhesion-abrasion process without any catastrophic damage. In contrast, a large-scale fracture happened in the wear process of PCD tools made of large-sized diamond grains. Adhesive wear was more severe on the PCD tools machined by EDG.


2021 ◽  
Vol 290 ◽  
pp. 116973
Author(s):  
Zongwei Ren ◽  
Zhenglong Fang ◽  
Takuhiro Arakane ◽  
Toru Kizaki ◽  
Tsukasa Nishikawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document