Rolling Bearing Fault Diagnosis Based on Blind Source Separation

2012 ◽  
Vol 217-219 ◽  
pp. 2546-2549 ◽  
Author(s):  
Chang Zheng Chen ◽  
Qiang Meng ◽  
Hao Zhou ◽  
Yu Zhang

This document presents fault diagnosis method of rolling bearing based on blind source separation. The algorithm based on fast ICA is improved to separate fault signals according to the rolling bearing’s fault characteristics. Through the experiment it is shown that the algorithm can separate the signals collected from rolling bearing and gearbox effectively, which can provide a new method for fault diagnosis and signal processing of machinery equipment.

2014 ◽  
Vol 971-973 ◽  
pp. 1321-1324
Author(s):  
Hao Zhou ◽  
Chang Zheng Chen ◽  
Xian Ming Sun ◽  
Huan Liu

This paper presents blind source separation of rolling bearing based on particle swarm optimization. The algorithm combines the advantages of both blind source separation and particle swarm optimization. Through the experiment it is shown that the algorithm can separate the signals collected from rolling bearing and gearbox effectively, which can provide a new method for fault diagnosis and signal processing of machinery equipment.


2021 ◽  
Vol 1792 (1) ◽  
pp. 012035
Author(s):  
Xingtong Zhu ◽  
Zhiling Huang ◽  
Jinfeng Chen ◽  
Junhao Lu

Information ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 359 ◽  
Author(s):  
Jianghua Ge ◽  
Guibin Yin ◽  
Yaping Wang ◽  
Di Xu ◽  
Fen Wei

To improve the accuracy of rolling-bearing fault diagnosis and solve the problem of incomplete information about the feature-evaluation method of the single-measurement model, this paper combines the advantages of various measurement models and proposes a fault-diagnosis method based on multi-measurement hybrid-feature evaluation. In this study, an original feature set was first obtained through analyzing a collected vibration signal. The feature set included time- and frequency-domain features, and also, based on the empirical-mode decomposition (EMD)-obtained time-frequency domain, energy and Lempel–Ziv complexity features. Second, a feature-evaluation framework of multiplicative hybrid models was constructed based on correlation, distance, information, and other measures. The framework was used to rank features and obtain rank weights. Then the weights were multiplied by the features to obtain a new feature set. Finally, the fault-feature set was used as the input of the category-divergence fault-diagnosis model based on kernel principal component analysis (KPCA), and the fault-diagnosis model was based on a support vector machine (SVM). The clustering effect of different fault categories was more obvious and classification accuracy was improved.


2020 ◽  
Author(s):  
Hong Zhong ◽  
Jingxing Liu ◽  
Liangmo Wang ◽  
Yang Ding ◽  
Yahui Qian

2012 ◽  
Vol 152-154 ◽  
pp. 1628-1633 ◽  
Author(s):  
Su Qun Cao ◽  
Xiao Ming Zuo ◽  
Ai Xiang Tao ◽  
Jun Min Wang ◽  
Xiang Zhi Chen

In recent years, machine learning techniques have been widely used in intelligent fault diagnosis field. As a major unsupervised learning technology, cluster analysis plays an important role in fault intelligent diagnosis based on machine learning. In rolling bearing fault diagnosis, the traditional spectrum analysis method usually adopts the resonant demodulation technology, but when the inner circle, rolling body or multi-point faults produce composite modulation, it is difficulty to identify the fault type from demodulation spectral lines. According to this, a novel rolling bearing fault diagnosis method based on KFCM (Kernel-based Fuzzy C-Means) cluster analysis is proposed. Through clustering on test data and the known samples, the memberships of test data are obtained. From these, the rolling bearing fault type can be determined. Experimental results show that this method is effective.


Sign in / Sign up

Export Citation Format

Share Document