Bearing Fault Diagnosis of the Gearbox Using Blind Source Separation

2020 ◽  
Author(s):  
Hong Zhong ◽  
Jingxing Liu ◽  
Liangmo Wang ◽  
Yang Ding ◽  
Yahui Qian
2012 ◽  
Vol 217-219 ◽  
pp. 2546-2549 ◽  
Author(s):  
Chang Zheng Chen ◽  
Qiang Meng ◽  
Hao Zhou ◽  
Yu Zhang

This document presents fault diagnosis method of rolling bearing based on blind source separation. The algorithm based on fast ICA is improved to separate fault signals according to the rolling bearing’s fault characteristics. Through the experiment it is shown that the algorithm can separate the signals collected from rolling bearing and gearbox effectively, which can provide a new method for fault diagnosis and signal processing of machinery equipment.


Author(s):  
Hong Zhong ◽  
Jingxing Liu ◽  
Liangmo Wang ◽  
Yang Ding ◽  
Yahui Qian

Fault diagnosis of gearboxes based on vibration signal processing is challenging, as vibration signals collected by acceleration sensors are typically a nonlinear mixture of unknown signals. Furthermore, the number of source signals is usually larger than that of sensors because of the practical limitation on sensor positions. Hence, the fault characterization is actually a nonlinear underdetermined blind source separation (NUBSS) problem. In this paper, a novel NUBSS algorithm based on kernel independent component analysis (KICA) and antlion optimization (ALO) is proposed to address the technical challenge. The mathematical model demonstrates the nonlinear mixing of source signals in the underdetermined cases. Ensemble empirical mode decomposition is used as a preprocessing tool to decompose the observed signals into a set of intrinsic mode functions that suffers from the problem of redundant components. The correlation coefficient is utilized to eliminate the redundant components. An adaptive threshold singular value decomposition method is proposed to estimate the number of source signals. Then a whitening process is carried out to transform the overdetermined blind source separation (BSS) into determined BSS, which can be solved by the KICA method. However, the reasonable selection of parameters in KICA limits its application to some extent. Therefore, ALO and Fisher’s linear discriminant analysis are adopted to further enhance the accuracy of the KICA method. The separation performance of the proposed method is assessed through simulation. The numerical results show that the proposed method can accurately estimate the number of source signals and attains a higher separation quality in tackling nonlinear mixed signals when compared with the existing methods. Finally, the inner ring fault experiment is conducted to preliminarily validate the practicability of the proposed method in bearing fault diagnosis.


2014 ◽  
Vol 971-973 ◽  
pp. 1321-1324
Author(s):  
Hao Zhou ◽  
Chang Zheng Chen ◽  
Xian Ming Sun ◽  
Huan Liu

This paper presents blind source separation of rolling bearing based on particle swarm optimization. The algorithm combines the advantages of both blind source separation and particle swarm optimization. Through the experiment it is shown that the algorithm can separate the signals collected from rolling bearing and gearbox effectively, which can provide a new method for fault diagnosis and signal processing of machinery equipment.


Sign in / Sign up

Export Citation Format

Share Document