Interference between the Gas Wells in the Method of the Pesudo-Pressure

2012 ◽  
Vol 229-231 ◽  
pp. 2606-2609
Author(s):  
Dai Yin Yin ◽  
Wei Zhou ◽  
Jian Xin Lu ◽  
Cheng Li Zhang

During the developing process of gas reservoirs, different gas well spacing will affect the production of the well and the bottom hole pressure. In this paper, the method of the advanced mechanics of fluids in porous media, the pressure changes into the pesudo-pressure, the changes of the pressure near the well have been obtained. Theoretical model of the gas reservoir has been established, which is built with constant pressure as internal boundary control conditions and infinite formation as outer boundary control conditions. According to the seepage differential equations of the pesudo-pressure, the changes in the production on bottom pressure can be derived in different well spacing. Then the pressure and production curves have been drawn.

2014 ◽  
Vol 962-965 ◽  
pp. 570-573
Author(s):  
Jian Yan ◽  
Xiao Bing Liang ◽  
Qian Wu ◽  
Qing Guo

Because of the gas slippage, the testing methods of stress sensitivity for gas reservoir should be different from that for oil reservoir. This text adopts the method that imposing back pressure on the outlet of testing core to weaken the gas slippage effect and tests the stress sensitivity of low permeability gas reservoirs, then analyzes the influence of permeability and water saturation on stress sensitivity. The results show that: low permeable and water-bearing gas reservoirs have strong stress sensitivity; the testing permeability has the power function relationship with net stress, compared to the exponential function, the fitting correlation coefficient is larger and more suited to the actual; the lower the permeability is and the higher water saturation is, the stronger the stress sensitivity is. The production of gas well is affected when considering the stress sensitivity, so the pressure dropping rate should be reasonable when low permeable gas reservoirs are developed. The results provide theoretical references for analyzing the well production and numerical simulation.


Author(s):  
Tao Zhu ◽  
Jing Lu

Many gas reservoirs are with bottom water drive. In order to prevent or delay unwanted water into the wellbore, the producing wells are often completed as partially penetrating vertical wells, and more and more horizontal wells have been drilled in recent years in bottom water drive gas reservoirs to reduce water coning and increase productivity. For a well, non-Darcy flow is inherently a near wellbore phenomenon. In spite of the considerable study that non-Darcy behavior of fully penetrating vertical wells, there has been no study of a partially penetrating vertical well or a horizontal well in a gas reservoir with bottom water drive. This paper presents new binomial deliverability equations for partially penetrating vertical gas wells and horizontal gas wells, assuming that only radial flow occurs in the near wellbore non-Darcy’s flow domain. The inflow performance of a vertical gas well is compared with that of a horizontal gas well. The proposed equations can account for the advantages of horizontal gas wells.


2018 ◽  
Vol 38 ◽  
pp. 01038
Author(s):  
Yu Bei Bei ◽  
Li Hui ◽  
Li Dong Lin

This Gs64 gas reservoir is a condensate gas reservoir which is relatively integrated with low porosity and low permeability found in Dagang Oilfield in recent years. The condensate content is as high as 610g/m3. At present, there are few reports about the well spacing of similar gas reservoirs at home and abroad. Therefore, determining the reasonable well spacing of the gas reservoir is important for ensuring the optimal development effect and economic benefit of the gas field development. This paper discusses the reasonable well spacing of the deep and low permeability gas reservoir from the aspects of percolation mechanics, gas reservoir engineering and numerical simulation. considering there exist the start-up pressure gradient in percolation process of low permeability gas reservoir, this paper combined with productivity equation under starting pressure gradient, established the formula of gas well spacing with the formation pressure and start-up pressure gradient. The calculation formula of starting pressure gradient and well spacing of gas wells. Adopting various methods to calculate values of gas reservoir spacing are close to well testing' radius, so the calculation method is reliable, which is very important for the determination of reasonable well spacing in low permeability gas reservoirs.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Xiao-Ping Li ◽  
Ning-Ping Yan ◽  
Xiao-Hua Tan

This paper presents a study of characteristic value method of well test analysis for horizontal gas well. Owing to the complicated seepage flow mechanism in horizontal gas well and the difficulty in the analysis of transient pressure test data, this paper establishes the mathematical models of well test analysis for horizontal gas well with different inner and outer boundary conditions. On the basis of obtaining the solutions of the mathematical models, several type curves are plotted with Stehfest inversion algorithm. For gas reservoir with closed outer boundary in vertical direction and infinite outer boundary in horizontal direction, while considering the effect of wellbore storage and skin effect, the pseudopressure behavior of the horizontal gas well can manifest four characteristic periods: pure wellbore storage period, early vertical radial flow period, early linear flow period, and late horizontal pseudoradial flow period. For gas reservoir with closed outer boundary both in vertical and horizontal directions, the pseudopressure behavior of the horizontal gas well adds the pseudosteady state flow period which appears after the boundary response. For gas reservoir with closed outer boundary in vertical direction and constant pressure outer boundary in horizontal direction, the pseudopressure behavior of the horizontal gas well adds the steady state flow period which appears after the boundary response. According to the characteristic lines which are manifested by pseudopressure derivative curve of each flow period, formulas are developed to obtain horizontal permeability, vertical permeability, skin factor, reservoir pressure, and pore volume of the gas reservoir, and thus the characteristic value method of well test analysis for horizontal gas well is established. Finally, the example study verifies that the new method is reliable. Characteristic value method of well test analysis for horizontal gas well makes the well test analysis process more simple and the results more accurate.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xuan Xu ◽  
Xizhe Li ◽  
Yong Hu ◽  
Qingyan Mei ◽  
Yu Shi ◽  
...  

AbstractThe development of water drive gas reservoirs (WDGRs) with fractures or strong heterogeneity is severely influenced by water invasion. Accurately simulating the rules of water invasion and drainage gas recovery countermeasures in fractured WDGRs, thereby revealing the mechanism of water invasion and an appropriate development strategy, is important for formulating water management measures and enhancing the recovery of gas reservoirs. In this work, physical simulation methods were proposed to gain a better understanding of water invasion and to optimize the water control of fractured WDGRs. Five groups of experiments were designed and conducted to probe the impacts of the distance between the fractures and the gas well, the drainage position, the drainage timing and the aquifer size on the water invasion and production performance of a gas reservoir. The gas and water production and the internal pressure drop were monitored in real time during the experiments. Based on the above experimental works, a theoretical analysis was conducted to quantitatively evaluate the performance of the gas reservoir recovery via the gas well production performance, water invasion, dynamic pressure drop and residual gas and water distribution analysis. The results show that when the fracture scale was appropriate, a gas well drilled close to a fracture (Experiment 1-3) or a high-permeability formation could also produce gas and achieve drainage efficiently. The recovery factor of Experiment 1-3 reached 62.5%, which was 24.6% and 21.1% higher than those of Experiments 1-1 and 1-2, respectively, which had wells drilled in low-permeability areas. Draining water near an aquifer can effectively inhibit water invasion during the early stage of gas recovery. The setup in Experiment 2-1 effectively inhibited water invasion and avoided the formation of water-sealed volumes of gas to recover 30% more gas than recovered with that of Experiment 1-1 without drainage wells. A shorter distance between the drainage well and the aquifer increased the drainage capacity and decreased the gas production capacity, respectively (Well 2 at Point A vs Point B). A larger aquifer had a lower gas recovery, which reduced the economic benefit. For example, due to an infinitely large aquifer, the reserves in Experiment 4-1 were developed by a single well, the gas recovery was only 33.4%. These research results are expected to be beneficial for the preparation of development plans and the optimization of water control measures for WDGRs.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3965
Author(s):  
Cheng Chang ◽  
Chuxi Liu ◽  
Yongming Li ◽  
Xiaoping Li ◽  
Wei Yu ◽  
...  

In order to account for big uncertainties such as well interferences, hydraulic and natural fractures’ properties and matrix properties in shale gas reservoirs, it is paramount to develop a robust and efficient approach for well spacing optimization. In this study, a novel well spacing optimization workflow is proposed and applied to a real shale gas reservoir with two-phase flow, incorporating the systematic analysis of uncertainty reservoir and fracture parameters. One hundred combinations of these uncertainties, considering their interactions, were gathered from assisted history matching solutions, which were calibrated by the actual field production history from the well in the Sichuan Basin. These combinations were used as direct input to the well spacing optimization workflow, and five “wells per section” spacing scenarios were considered, with spacing ranging from 157 m (517 ft) to 472 m (1550 ft). An embedded discrete fracture model was used to efficiently model both hydraulic fractures and complex natural fractures non-intrusively, along with a commercial compositional reservoir simulator. Economic analysis after production simulation was then carried out, by collecting cumulative gas and water production after 20 years. The net present value (NPV) distributions of the different well spacing scenarios were calculated and presented as box-plots with a NPV ranging from 15 to 35 million dollars. It was found that the well spacing that maximizes the project NPV for this study is 236 m (775 ft), with the project NPV ranging from 15 to 35 million dollars and a 50th percentile (P50) value of 25.9 million dollars. In addition, spacings of 189 m (620 ft) and 315 m (1033 ft) can also produce substantial project profits, but are relatively less satisfactory than the 236 m (775 ft) case when comparing the P25, P50 and P75 values. The results obtained from this study provide key insights into the field pilot design of well spacing in shale gas reservoirs with complex natural fractures.


2012 ◽  
Vol 204-208 ◽  
pp. 297-302
Author(s):  
Kui Zhang ◽  
Hai Tao Li ◽  
Yang Fan Zhou ◽  
Ai Hua Li

Low permeability, low abundance, water-bearing gas reservoirs are widely distributed in China, and their reserves constitute 85% of all kinds of reservoirs in current. It has important realistic meanings to develop them. Determining of reasonable gas well production is the prerequisite to achieving long-term high productivity and stable production. This paper takes Shanggu gas field at Sulige Gas Field for example, respectively from the dynamic data analogy methods, the pressure drop rate statistical methods, gas curve methods, production system nodal analysis methods, and studied the reasonable capacity of the low permeability gas reservoir. Through comprehensive analysis,the comprehensive technical indexes about single well reasonable production was determined.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Shu Luo ◽  
Mohan Kelkar

Many operators of tight gas reservoir fields are interested in determining the infill well potential in these fields. Over drilling may prove to be uneconomical; whereas, under drilling would leave unexplored reserves under the ground. In predicting EUR (expected ultimate recovery) of a potential infill well, operators are interested in knowing what percentage of the production will be come from incremental reserves (newly accessed) and what percentage is from acceleration reserves (which can be produced from existing wells). So, higher the percentage of incremental reserves better is the potential of an infill well. In this paper, we present a novel method for determining the incremental versus acceleration potential for infill well in a tight gas reservoir. We evaluate the existing wells by plotting the data in a form so that the data can be linearly extrapolated. Then, we can predict the EUR for individual wells before and after new wells in the vicinity are drilled. By knowing how much gas is “diverted” from the older wells, we determine the acceleration component of an infill well. By repeating the process as the field is being developed, we can determine the fraction of acceleration and incremental components of the EUR at each stage of infill drilling. We will also know how the EUR is changing as the well spacing is slowly reduced. To ensure our results are reasonable, we also compare our EUR values with EUR’s reported by the operator as proved reserves. Armed with this information, we can extrapolate infill well potential for a smaller spacing, including the contribution due to acceleration versus incremental production. We applied this procedure for Wamsutter field in Wyoming. Using the procedure, we recommended infill well locations to the operator. Operator has drilled seven wells based on our recommendations. Using this new method, we can predict the EUR for infill well as well as acceleration and incremental contribution of the infill well. Thus, potential of infill wells at different locations can be evaluated and compared.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Jing Lu ◽  
Shawket Ghedan ◽  
Tao Zhu ◽  
Djebbar Tiab

Many gas reservoirs are with bottom water drive. In order to prevent or delay unwanted water into the wellbore, the producing wells are often completed as partially penetrating vertical wells, and more and more horizontal wells have been drilled in recent years in bottom water drive gas reservoirs to reduce water coning and increase productivity. For a well, non-Darcy flow is inherently a near wellbore phenomenon. In spite of the considerable study that non-Darcy behavior of fully penetrating vertical wells, there has been no study of a partially penetrating vertical well or a horizontal well in a gas reservoir with bottom water drive. This paper presents new binomial deliverability equations for partially penetrating vertical gas wells and horizontal gas wells, assuming that only radial flow occurs in the near wellbore non-Darcy’s flow domain. The inflow performance of a vertical gas well is compared with that of a horizontal gas well. The proposed equations can account for the advantages of horizontal gas wells.


2021 ◽  
Author(s):  
xuan xu ◽  
Xizhe li ◽  
yong hu ◽  
yu shi ◽  
qingyan mei ◽  
...  

Abstract The development of water drive gas reservoirs (WDGRs) with fractures or strong heterogeneity is severely influenced by water invasion. Accurately simulating the rules of water invasion and drainage gas recovery countermeasures in fractured WDGRs, thereby revealing the mechanism of water invasion and an appropriate development strategy, is important for formulating water management measures and enhancing the recovery of gas reservoirs. In this work, physical simulation methods were proposed to gain a better understanding of water invasion and to optimize the water control of fractured WDGRs. Five groups of experiments were designed and conducted to probe the impacts of the distance between the fractures and the gas well, the drainage position, the drainage timing and the aquifer size on the water invasion and production performance of a gas reservoir. The gas and water production and the internal pressure drop were monitored in real time during the experiments. Based on the above experimental works, a theoretical analysis was conducted to quantitatively evaluate the performance of the gas reservoir recovery via the gas well production performance, water invasion, dynamic pressure drop and residual gas and water distribution analysis. The results show that when the fracture scale was appropriate, a gas well drilled close to a fracture (Experiment 1–3) or a high-permeability formation could also produce gas and achieve drainage efficiently. The recovery factor of Experiment 1–3 reached 62.5%, which was 24.6% and 21.1% higher than those of Experiments 1–1 and 1–2, respectively, which had wells drilled in low-permeability areas. Draining water near an aquifer can effectively inhibit water invasion during the early stage of gas recovery. The setup in Experiment 2 − 1 effectively inhibited water invasion and avoided the formation of water-sealed volumes of gas to recover 30% more gas than recovered with that of Experiment 1–1 without drainage wells. A shorter distance between the drainage well and the aquifer increased the drainage capacity and decreased the gas production capacity, respectively (Well 2 at Point A vs Point B). A larger aquifer had a lower gas recovery, which reduced the economic benefit. For example, due to an infinitely large aquifer, the reserves in Experiment 4 − 1 were developed by a single well, the gas recovery was only 33.4%. These research results are expected to be beneficial for the preparation of development plans and the optimization of water control measures for WDGRs.


Sign in / Sign up

Export Citation Format

Share Document