Analysis of Sensitivity and Linearity of SiGe MEMS Piezoresistive Pressure Sensor

2012 ◽  
Vol 241-244 ◽  
pp. 1024-1027 ◽  
Author(s):  
S.Maflin Shaby ◽  
A. Vimala Juliet

In this paper a surface micromachined MEMS Piezoresistive pressure sensor was designed. A simulation programs were developed to predict the sensitivity and linearity behavior of the piezoresistive pressure sensor. Based on the small and large deflection theory the diaphragm performances were analyzed. Different diaphragm shape, pressure range, placement of resistors and the properties of the resistors were considered during the analysis. The output response of the pressure sensor was also found as a function of temperature and pressure. It was found that silicon germanium gave better sensitivity and less linearity error. The analysis showed that sensitivity and linearity are influenced by diaphragm thickness and length of the sensing resistor used in the diaphragm of the Piezoresistive pressure sensor. It was found that the sensitivity of 5.2mV/V can be achieved for silicon germanium

2005 ◽  
Vol 128 (3) ◽  
pp. 414-419
Author(s):  
James Gombas

A circular flat plate with a perforated central region is to be formed by dies into a dome and then welded onto a cylindrical shell. After welding, the dome must be spherical within a narrow tolerance band. This plate forming and welding is simulated using large deflection theory elastic-plastic finite element analysis. The manufacturing assessment is performed so that the dies may be designed to compensate for plate distortions that occur during various stages of manufacturing, including the effects of weld distortion. The manufacturing simulation benchmarks against measurements taken at several manufacturing stages from existing hardware. The manufacturing simulation process can then be used for future applications of similar geometries.


1970 ◽  
Vol 5 (2) ◽  
pp. 140-144 ◽  
Author(s):  
A Scholes

A previous paper (1)∗described an analysis for plates that made use of non-linear large-deflection theory. The results of the analysis were compared with measurements of deflections and stresses in simply supported rectangular plates. In this paper the analysis has been used to calculate the stresses and deflections for clamped-edge plates and these have been compared with measurements made on plates of various aspect ratios. Good agreement has been obtained for the maximum values of these stresses and deflections. These maximum values have been plotted in such a form as to be easily usable by the designer of pressure-loaded clamped-edge rectangular plates.


2017 ◽  
Vol 17 (08) ◽  
pp. 1750091 ◽  
Author(s):  
Joon Kyu Lee ◽  
Byoung Koo Lee

This paper deals with the large deflections and buckling loads of tapered cantilever columns with a constant volume. The column member has a solid regular polygonal cross-section. The depth of this cross-section is functionally varied along the column axis. Geometrical nonlinear differential equations, which govern the buckled shape of the column, are derived using the large deflection theory, considering the effect of shear deformation. The buckling load of the column is approximately equivalent to the load under which a very small tip deflection occurs. In regard to the numerical results, both the elastica and buckling loads with varying column parameters are discussed. The configurations of the strongest column are also presented.


1974 ◽  
Vol 41 (3) ◽  
pp. 725-730 ◽  
Author(s):  
H. Abe´ ◽  
M. Utsui

A large deflection theory of axially symmetric and thin plates made of the Mooney-Rivlin material is developed by making a systematic and consistent approximation from the exact three-dimensional theory. The problem of a circular plate made of the neo-Hookean material subjected to uniform lateral pressure is investigated with the use of the basic equations just derived, and the results are compared with the solutions based on the von Karman plate equations.


Volume 1 ◽  
2004 ◽  
Author(s):  
Guozhong Yang ◽  
James A. Liburdy

Droplet formation from a passive vibrating nozzle driven by a pulsed pressure wave is numerical simulated. The nozzle is an orifice in a thin walled plate which is allowed to vibrate due to the pressure loading on the plate. The analysis couples the fluid flow from the nozzle and the resultant droplet formation with the nozzle vibration calculated using large deflection theory. A one-dimensional fluid flow model is used where droplet formation is driven by a short step change in applied pressure. The problem is made nondimensional based on the capillary parameters of time, velocity and pressure. The nozzle material properties are varied to alter the vibration characteristics of the orifice plate used to form the nozzle. It is determined that the vibration of the nozzle only weakly affects the droplet break-off time and size, but greatly affects the droplet velocity. The resultant filament after drop break-off is also significantly affected by the nozzle vibration, resulting in variations in satellite droplet formation. Higher vibration amplitudes, which correspond to more flexible plates, result in larger total satellite volume.


Sensor Review ◽  
2019 ◽  
Vol 39 (4) ◽  
pp. 586-597 ◽  
Author(s):  
Manjunath Manuvinakurake ◽  
Uma Gandhi ◽  
Mangalanathan Umapathy ◽  
Manjunatha M. Nayak

Purpose Structures play a very important role in developing pressure sensors with good sensitivity and linearity, as they undergo deformation to the input pressure and function as the primary sensing element of the sensor. To achieve high sensitivity, thinner diaphragms are required; however, excessively thin diaphragms may induce large deflection and instability, leading to the unfavorable performances of a sensor in terms of linearity and repeatability. Thereby, importance is given to the development of innovative structures that offer good linearity and sensitivity. This paper aims to investigate the sensitivity of a bossed diaphragm coupled fixed guided beam three-dimensional (3D) structure for pressure sensor applications. Design/methodology/approach The proposed sensor comprises of mainly two sensing elements: the first being the 3D mechanical structure made of bulk silicon consisting of boss square diaphragm along with a fixed guided beam landing on to its center, forming the primary sensing element, and the diffused piezoresistors, which form the secondary sensing element, are embedded in the tensile and compression regions of the fixed guided beam. This micro mechanical 3 D structure is packaged for applying input pressure to the bottom of boss diaphragm. The sensor without pressure load has no deflection of the diaphragm; hence, no strain is observed on the fixed guided beam and also there is no change in the output voltage. When an input pressure P is applied through the pressure port, there is a deformation in the diaphragm causing a deflection, which displaces the mass and the fixed guided beam vertically, causing strain on the fixed guided beam, with tensile strain toward the guided end and compressive strain toward the fixed end of the close magnitudes. The geometrical dimensions of the structure, such as the diaphragm, boss and fixed guided beam, are optimized for linearity and maximum strain for an applied input pressure range of 0 to 10 bar. The structure is also analyzed analytically, numerically and experimentally, and the results are compared. Findings The structure offers equal magnitudes of tensile and compressive stresses on the surface of the fixed guided beam. It also offers good linearity and sensitivity. The analytical, simulation and experimental studies of this sensor are introduced and the results correlate with each other. Customized process steps are followed wherein two silicon-on-insulator (SOI) wafers are fusion bonded together, with SOI-1 wafer used to realize the diaphragm along with the boss and SOI-2 wafer to realize the fixed guided beam, leading to formation of a 3D structure. The geometrical dimensions of the structure, such as the diaphragm, boss and fixed guided beam, are optimized for linearity and maximum strain for an applied input pressure range of 0 to10 bar. Originality/value This paper presents a unique and compact 3D micro-mechanical structure pressure sensor with a rigid center square diaphragm (boss diaphragm) and a fixed guided beam landing at its center, with diffused piezoresistors embedded in the tensile and compression regions of the fixed guided beam. A total of six masks were involved to realize and fabricate the 3D structure and the sensor, which is presumed to be the first of its kind in the fabrication of MEMS-based piezoresistive pressure sensor.


Sign in / Sign up

Export Citation Format

Share Document