Study of the Damage of Drills in Dry Drilling of NM360 Steels

2012 ◽  
Vol 268-270 ◽  
pp. 275-278 ◽  
Author(s):  
Ming San Xu ◽  
Ji Bin Jiang ◽  
Shou Jin Zeng

According to the characteristics of NM360, a contrast experiment for drilling performance in YG8 cemented carbide twist drill, high-speed steel twist drill and factories used in coating the ordinary high-speed steel twist drill has been done. Using microscope to observe the damage of drills, we found that form this experiment some causation in tool invalidation that tool breakage is main factor for the high-speed steel drill bits, brittle fracture is main factor for carbide drill bits. Brittle carbide cutting tools, feed speed too much impact load is too large, causing the blade fracture. As the tool edge wedge angle is too small, poor edge strength, easy chipping, edge wedge angle can not be too small.

2013 ◽  
Vol 652-654 ◽  
pp. 2169-2172
Author(s):  
Ming San Xu ◽  
Ji Bin Jiang ◽  
Guang Cun Wang

According to the characteristics of NM360, a contrast experiment for drilling performance in YG8 cemented carbide twist drill, high-speed steel twist drill and factories used in coating the ordinary high-speed steel twist drill has been done. Using microscope to observe tool wear, we found that the flank wear and chisel edge wear are the main wear of the drill. The carbide tools has a better ability of resistance to plastic deformation, abrasive wear and adhesive wear than high-speed steel cutting tools. The coating tools are better to resist abrasive wear and adhesive wear than uncoated tools.Deformation of carbide cutting tools, abrasive wear, ability than high-speed steel cutting tools.


The small and medium scale industry in drilling and cutting sector widely use cutting tools made by High Speed Steel (HSS). The improvement of lifetime of HSS drill bits helps these establishments to achieve product economy. The improvement in the performance and service lifetime of high-speed steel (HSS) twisted drill bits are studied by depositing Titanium dioxide (TiO2 ) nano-coatings using reactive dc magnetron sputtering Method. Pure titanium (99.99%) metal is used as target material for making nano-coatings in oxygen atmosphere. X-ray diffraction studies indicated change of phase of annealed samples compared to as-deposited coatings. X-ray reflection (XRR) measurements estimated nanocoating thickness on the HSS drill bit around 100nm. The lifetime of TiO2 nano-coated, and cryogenically treated nano-coated tools significantly improved compared to uncoated (bare) HSS drill bit. The tool life has been enhanced by about 16% when TiO2 nano-coatings were made on HSS drill bits. Further lifetime enhancement of 10% was observed when the nanocoated drill bit is given cryogenic treatment in liquid nitrogen. SEM images and EDS profiles are reported. The minimum surface roughness measured as 7.296x10-6m for TiO2 coated and cryo-treated HSS drill tool.


Alloy Digest ◽  
1988 ◽  
Vol 37 (5) ◽  

Abstract UNS No. T11310 is the high vanadium type of molybdenum high-speed steel. It is a deep-hardening steel and offers high cutting ability and excellent finishing properties. It is a general-purpose steel for cutting tools and is used in such applications as taps, lathe tools and reamers. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on heat treating and machining. Filing Code: TS-490. Producer or source: Tool steel mills.


Alloy Digest ◽  
1960 ◽  
Vol 9 (2) ◽  

Abstract ELECTRITE COBALT is a 5% cobalt type high-speed steel recommended for heavy duty cutting tools. This datasheet provides information on composition, physical properties, hardness, and elasticity as well as fracture toughness. It also includes information on forming, heat treating, and machining. Filing Code: TS-89. Producer or source: Latrobe Steel Company.


Alloy Digest ◽  
1981 ◽  
Vol 30 (9) ◽  

Abstract GUTERL M-2 is a molybdenum-tungsten type of high-speed steel with fairly good resistance to decarburization. It is a general-purpose high-speed steel and it provides excellent resistance to abrasion and shock. It is used widely for cutting tools. Among its many applications are hack saws, circular saws, lathe tools, gear cutters, planer tools and wood knives. This datasheet provides information on composition, physical properties, hardness, and elasticity. It also includes information on forming, heat treating, machining, and joining. Filing Code: TS-387. Producer or source: Guterl Special Steel Corporation.


Alloy Digest ◽  
1979 ◽  
Vol 28 (7) ◽  

Abstract VASCO 8-N-2 is a molybdenum high-speed steel containing a low percentage of tungsten. It can be used successfully for a variety of cutting tools; in fact, it is a general-purpose high-speed steel. Its composition represents the first molybdenum high-speed steel to be manufactured and find practical use in the field of cutting tools. Its many uses include drills, milling cutters, lathe tools, blanking dies and special shear blades. This datasheet provides information on composition, physical properties, hardness, and elasticity as well as fracture toughness. It also includes information on forming, heat treating, and machining. Filing Code: TS-351. Producer or source: Teledyne Vasco.


Alloy Digest ◽  
1978 ◽  
Vol 27 (12) ◽  

Abstract STORA ASP 60 is a molybdenum-tungsten high-speed steel with high percentages of carbon, cobalt and vanadium. It is a powder metallurgy steel, has high hardenability and can be hardened by cooling in air or oil from the austenitizing temperature. It has an excellent combination of wear resistance, toughness, hot hardness and resistance to tempering. It is recommended for cutting tools for hard-to-machine material and high cutting speeds. This datasheet provides information on composition, physical properties, microstructure, hardness, and elasticity. It also includes information on forming, heat treating, and machining. Filing Code: TS-342. Producer or source: Stora Kopparberg, Special Steels Division.


Alloy Digest ◽  
1978 ◽  
Vol 27 (9) ◽  

Abstract STORA ASP 30 is a high hardenability tungsten-molybdenum alloyed high-speed steel with high cobalt content. It is recommended for cutting tools for hard-to-machine material and high cutting speeds. It has excellent wear resistance, toughness, hot hardness and resistance to tempering. The excellent size stability and good grindability of ASP 30 make it very suitable for tools with a complicated shape. This datasheet provides information on composition, physical properties, microstructure, hardness, and elasticity. It also includes information on forming, heat treating, and machining. Filing Code: TS-338. Producer or source: Stora Kopparberg, Special Steels Division.


2015 ◽  
Vol 67 (2) ◽  
pp. 172-180 ◽  
Author(s):  
Mumin Sahin ◽  
Cenk Misirli ◽  
Dervis Özkan

Purpose – The purpose of this paper is to examine mechanical and metallurgical properties of AlTiN- and TiN-coates high-speed steel (HSS) materials in detail. Design/methodology/approach – In this study, HSS steel parts have been processed through machining and have been coated with AlTiN and TiN on physical vapour deposition workbench at approximately 6,500°C for 4 hours. Tensile strength, fatigue strength, hardness tests for AlTiN- and TiN-coated HSS samples have been performed; moreover, energy dispersive X-ray spectroscopy and X-ray diffraction analysis and microstructure analysis have been made by scanning electron microscopy. The obtained results have been compared with uncoated HSS components. Findings – It was found that tensile strength of TiAlN- and TiN-coated HSS parts is higher than that of uncoated HSS parts. Highest tensile strength has been obtained from TiN-coated HSS parts. Number of cycles for failure of TiAlN- and TiN-coated HSS parts is higher than that for HSS parts. Particularly TiN-coated HSS parts have the most valuable fatigue results. However, surface roughness of fatigue samples may cause notch effect. For this reason, surface roughness of coated HSS parts is compared with that of uncoated ones. While the average surface roughness (Ra) of the uncoated samples was in the range of 0.40 μm, that of the AlTiN- and TiN-coated samples was in the range of 0.60 and 0.80 μm, respectively. Research limitations/implications – It would be interesting to search different coatings for cutting tools. It could be the good idea for future work to concentrate on wear properties of tool materials. Practical implications – The detailed mechanical and metallurgical results can be used to assess the AlTiN and TiN coating applications in HSS materials. Originality/value – This paper provides information on mechanical and metallurgical behaviour of AlTiN- and TiN-coated HSS materials and offers practical help for researchers and scientists working in the coating area.


Sign in / Sign up

Export Citation Format

Share Document