Study of the Wear of Drills in Dry Drilling of NM360 Steels

2013 ◽  
Vol 652-654 ◽  
pp. 2169-2172
Author(s):  
Ming San Xu ◽  
Ji Bin Jiang ◽  
Guang Cun Wang

According to the characteristics of NM360, a contrast experiment for drilling performance in YG8 cemented carbide twist drill, high-speed steel twist drill and factories used in coating the ordinary high-speed steel twist drill has been done. Using microscope to observe tool wear, we found that the flank wear and chisel edge wear are the main wear of the drill. The carbide tools has a better ability of resistance to plastic deformation, abrasive wear and adhesive wear than high-speed steel cutting tools. The coating tools are better to resist abrasive wear and adhesive wear than uncoated tools.Deformation of carbide cutting tools, abrasive wear, ability than high-speed steel cutting tools.

2012 ◽  
Vol 268-270 ◽  
pp. 275-278 ◽  
Author(s):  
Ming San Xu ◽  
Ji Bin Jiang ◽  
Shou Jin Zeng

According to the characteristics of NM360, a contrast experiment for drilling performance in YG8 cemented carbide twist drill, high-speed steel twist drill and factories used in coating the ordinary high-speed steel twist drill has been done. Using microscope to observe the damage of drills, we found that form this experiment some causation in tool invalidation that tool breakage is main factor for the high-speed steel drill bits, brittle fracture is main factor for carbide drill bits. Brittle carbide cutting tools, feed speed too much impact load is too large, causing the blade fracture. As the tool edge wedge angle is too small, poor edge strength, easy chipping, edge wedge angle can not be too small.


1972 ◽  
Vol 4 (6) ◽  
pp. 516-518
Author(s):  
V. Ya. Bulanov ◽  
A. P. Shevel ◽  
P. A. Yudkovskii

2012 ◽  
Vol 562-564 ◽  
pp. 619-622
Author(s):  
Ji Ming Xiao ◽  
Li Jing Bai ◽  
Yan Li ◽  
Jian Ming Zheng ◽  
Qi Long Yuan

High-speed steel (HSS) turning tools was designed and sharpened according to the angles of the complex shape cutting tools. CrAlTiN coating was deposited using unbalance magnetron sputtering plating technique. By dry turning tests, the wear characteristics and wear mechanisms of the face were investigated. The results show that the face wear of the coated HSS tools is obviously different from that of the uncoated tools, the crater width is smaller, the boundary is jagged and the lowest position is away from the major cutting edge. Adhesive wear and local adhesive wear are the main wear mechanisms.


2013 ◽  
Vol 594-595 ◽  
pp. 1117-1121
Author(s):  
Мazhyn Skakov ◽  
Bauyrzhan Rakhadilov ◽  
Merey Rakhadilov

In this work the influence of electrolytic-plasma nitriding on the abrasive wear-resistance of R6M5 high-speed steel were under research. We registered that after electrolytic-plasma nitriding on R6M5 steel surface modified layer is formed with 20-40 μm thickness and with increased microhardness of 9000-12200 MPa. Testing mode for the nitrided samples high-speed steel on abrasive wear developed. It is established, that electrolyte-plasma nitriding allows to increase wear-resistance of R6M5 steel surface layer comparing to original. It was determined that abrasive wear-resistance of R6M5 steel surface layer is increased to 25% as a result of electrolytic plasma nitriding. Thus, studies have demonstrated the feasibility and applicability of electrolytic-plasma nitriding in order to improve cutting tools work resource, working under friction and wear conditions.


2015 ◽  
Vol 761 ◽  
pp. 262-266
Author(s):  
A. Siti Sarah ◽  
A.B. Mohd Hadzley ◽  
Raja Izamshah ◽  
Abu Abdullah

This paper aims to study the tool life of coated and uncoated high speed steel (HSS) when machining LM6 aluminium. The experiment was carried out in dry condition with spindle speed of 5000 rpm and 6000 rpm, and feed rate of 90 mm/min and 120 mm/min. Axial and radial depth of cut remain constant at 0.5 mm and 1.0 mm, respectively during the experiment. Throughout the experiments, coated HSS showed higher tool life as compared to uncoated HSS due to the coating layer of titanium aluminium nitride (TiAlN) provides protection from rapid wear during machining. For both cutting tools, the optimum cutting parameter was recorded at 5000 rpm spindle speed, 90 mm/min feed rate, 0.5 mm axial depth of cut and 1.0 mm radial depth of cut. Some evidence of built up edge (BUE) formation were observed at most of cutting tools, showing the dominant wear mechanisms appear to be adhesive wear.


2012 ◽  
Vol 32 (2) ◽  
pp. 186-188 ◽  
Author(s):  
V. M. Kishurov ◽  
V. N. Ippolitov ◽  
M. V. Kishurov

Sign in / Sign up

Export Citation Format

Share Document