Numerical Simulation of Muzzle Flow Field of Gun Based on CFD

2013 ◽  
Vol 291-294 ◽  
pp. 1981-1984
Author(s):  
Zhang Xia Guo ◽  
Yu Tian Pan ◽  
Yong Cun Wang ◽  
Hai Yan Zhang

Gunpowder was released in an instant when the pill fly out of the shell during the firing, and then formed a complicated flow fields about the muzzle when the gas expanded sharply. Using the 2 d axisymmetric Navier-Stokes equation combined with single equation turbulent model to conduct the numerical simulation of the process of gunpowder gass evacuating out of the shell without muzzle regardless of the pill’s movement. The numerical simulation result was identical with the experimental. Then simulated the evacuating process of gunpowder gass of an artillery with muzzle brake. The result showed complicated wave structure of the flow fields with the muzzle brake and analysed the influence of muzzle brake to the gass flow field distribution.

1973 ◽  
Vol 13 (02) ◽  
pp. 69-74 ◽  
Author(s):  
Graham H. Neale ◽  
Walter K. Nader

Abstract Using the creeping Navier Stokes equation within a spherical cavity and the Darcy equation in the surrounding homogeneous and isotropic porous medium, the flow field in the entire system is evaluated. Applying this result to a representative generalizing model of a uniformly vuggy, homogeneous and isotropic porous medium, an engineering estimation of the interdependence of the matrix permeability km, the vug porosity permeability km, the vug porositytotal volume of vug space 0v = ----------------------------total volume of sample and the system permeability ks of the vuggy porous medium is derived. This interdependence can be expressed by the formula: Introduction The objective of this study is the derivation of an engineering formula that shows the interdependence of matrix permeability, km, vug porosity, 0 v, and system permeability, ks, of a uniformly vuggy porous medium. In the first section, with the above porous medium. In the first section, with the above goal in mind and to satisfy more general interests, we shall study and predict the flow field within a single cavity bounded by a sphere, of radius R, and in the surrounding homogeneous and isotropic porous medium. In the second section, we shall porous medium. In the second section, we shall suggest as a generalizing model of a uniformly vuggy, homogeneous and isotropic porous medium a regular cubic array of monosized spherical cavities. Applying the formula for the pressure field near a single spherical cavity, we shall then develop the sought engineering formula. To describe the creeping flow of the incompressible liquid of viscosity, in the spherical cavity, we shall employ the creeping Navier Stokes equation, .............................(1) The Darcy equation, ,...........................(2) will be used to describe the flow of this liquid in the porous medium of permeability k that fills the space outside the cavity. p designates the liquid pressure referred to datum, denotes the flow pressure referred to datum, denotes the flow vector, and * is used to indicate macroscopically averaged quantities pertaining specifically to a porous medium. porous medium. In hydrodynamics, one generally requests continuity of the pressure, of the flow vector, and of the shear tensor throughout the fundamental domain of the problem - in particular, along the boundary surfaces, which separate subdomains. When applying these principles to this problem, one would impose at the spherical boundary that separates the cavity from the porous medium:continuity of the pressure,continuity of the component of u that is orthogonal to the surface,continuity of the other component of u that is tangential to the surface,continuity of the shear component tangential to the surface. Arguments of this nature have lead to the suggestion of a generalization of the Darcy equation, namely, the Brinkman equation, ...............(3) However, both the necessity and the validity of this generalization have been challenged; indeed, it has been shown that a mathematically consistent solution of our problem may be obtained, using Eqs. 1 and 2 within the respective subdomains, provided one abandons the request for continuity of the shear at the wall of the cavity (compare Boundary Condition d above).** SPEJ P. 69


2012 ◽  
Vol 174-177 ◽  
pp. 232-235 ◽  
Author(s):  
Ling Yun Meng

Abstract: The moisture flow and drying of porous media, such as concrete, is tackled through the Navier-Stokes equation, where the Navier-Stokes equation is considered as the link between the theory of fluid flow, Acoustic Emission (AE) experiments on cracking (sound propagation based on the wave equation) and Lattice Gas Automata, (LGA) being a numerical simulation of the Navier-Stokes equation. Early age cracking in the ITZ is induced by using the moisture flow as the only “load” that causes cracking due to drying shrinkage volume changes in Environmental Scanning Electron Microscopy (ESEM) tests. An attempt is made to link and compare experimental results conducted by means of AE and ESEM to the results of 2-D LGA numerical simulation. Lattice Gas Automata (FHP model) is used as a basis to generate a new model for drying of porous medium. Special emphasis in a model creation is given to the Interface Transition Zone (ITZ), between aggregate and cement paste, because of the early crack initiation in this highly porous and strength-weak zone.


Author(s):  
Masanao Takahashi ◽  
Tomiichi Hasegawa ◽  
Takatsune Narumi

Jet thrusts and pressure losses of water through micro orifices and slots were measured by using an electric balance and a pressure transducer respectively. It was found that the thrusts for the orifice of 1mm order agree with the result of numerical simulation using Navier-Stokes equation, but the thrusts for the fine apertures of the order 10 μm are well below those predicted. Similarly, the experimental result indicated that the pressure losses for the orifice of 1mm order agree with the theoretical one, but those for the fine apertures of the order 10 μm significantly decrease.


2010 ◽  
Vol 44-47 ◽  
pp. 2001-2005
Author(s):  
Jing Hu ◽  
Xian Zhou Wang ◽  
Ming Yue Liu ◽  
Zhi Guo Zhang ◽  
Qi Zhou

Based on CFD technology, flow around a 2-dimentional hydrofoil of highly skewed propeller and NACA series hydrofoils are simulated using 2D incompressible Navier-Stokes equation with Realizable k- turbulence model. In the numerical simulation, the vapor volume fraction is calculated for different cavitation numbers and angles of attack by adding the mixture model. The hydrofoil’s performance and the relationship with hydrofoil parameter are qualitatively analyzed. Special focus is given to the influence of the cavitation numbers and angle of attack on cavitation characteristics.


1993 ◽  
Vol 247 ◽  
pp. 65-77 ◽  
Author(s):  
L. Shtilman ◽  
M. Spector ◽  
A. Tsinober

A comparison is made between a number of properties of a quasi-homogeneous isotropic turbulent field obtained from a direct numerical simulation of the Navier–Stokes equation and its random counterpart with the same energy spectrum. It is demonstrated that some effects in a real flow have a considerable contribution of a kinematic nature (e.g. reduction of nonlinearity), while others are mostly dynamical (e.g. alignment between vorticity and eigenvectors of the rate of strain).


Sign in / Sign up

Export Citation Format

Share Document