The Applications of MBR in Municipal Wastewater Treatment and Reuse

2013 ◽  
Vol 295-298 ◽  
pp. 1045-1048 ◽  
Author(s):  
Jian Li ◽  
Yun Long Yang ◽  
Kai Xue

The membrane-bioreactor (MBR) is a combination technology that includes biological treatment and membrane filtration separation. According to the test, it studied the use of membrane bioreactor reuse in municipal wastewater treatment and reuse. The test measured every target about treated water quality,NH3-N,TN,CODcr,Sludge concentration and Turbidity. The results of the test show that the MBR can get efficient solid liquid separation to obtain the recycled water directly, and can maintain high concentration of microbial biomass in bioreactor. In addition, it can increase the volume of load handing equipment, and reduce floor space.

2019 ◽  
Vol 86 ◽  
pp. 00020
Author(s):  
Zbigniew Mucha ◽  
Włodzimierz Wójcik ◽  
Michał Polus

In recent years, anaerobic membrane bioreactor (AnMBR) technology has been considered as a very appealing alternative for wastewater treatment due to its significant advantages over conventional anaerobic treatment and aerobic membrane bioreactor (MBR) technology. The paper provides an overview of the current status of the anaerobic membrane bioreactor technology with a special emphasis on its performance and drawbacks when applied for domestic and municipal wastewater treatment. According to the reported data, the renewable energy produced at the plants (i.e. from methane) covered the energy demand for membrane filtration while the excess energy can be further utilized. Anaerobic membrane bioreactors are an attractive technology that needs further research efforts and applications at an industrial scale.


2018 ◽  
Vol 45 ◽  
pp. 00054 ◽  
Author(s):  
Bozena Mrowiec

The aim of this paper was to review the literature data regarding the physico-chemical characteristic of plastic pollutants discharged with municipal sewage, the practical possibility of removing microplastic particles from wastewater during different treatment steps in WWTPs and the problem of surface water contamination within them. Microplastics (the size range of 1 nm to < 5 mm), have been recognized as an emerging threat, as well as an ecotoxicological and ecological risk for water ecosystems. Municipal wastewater treatment plants (WWTPs) are mentioned as the main point sources of microplastics in an aquatic environment. Microplastic particles can be effectively removed in the primary treatment zones via solids skimming and sludge settling processes. Different tertiary treatment processes such as: gravity sand filtration, discfilter, air flotation and membrane filtration provide substantial additional removal of microplastics, and the efficiency of wastewater treatment process can be at a removal level of 99.9%. Nevertheless, given the large volumes of effluent constantly discharged to receivers, even tertiary level WWTPs may constitute a considerable source of microplastics in the surface water.


2019 ◽  
Vol 41 (1) ◽  
pp. 47-54
Author(s):  
Magdalena Domańska ◽  
Anna Boral ◽  
Kamila Hamal ◽  
Magdalena Kuśnierz ◽  
Janusz Łomotowski ◽  
...  

AbstractThe increasingly stringent requirements for wastewater treatment enforce the adoption of technologies that reduce pollution and minimize waste production. By combining the typical activated sludge process with membrane filtration, biological membrane reactors (MBR) offer great technological potential in this respect. The paper presents the principles and effectiveness of using an MBR at the Głogów Małopolski operation. Physicochemical tests of raw and treated wastewater as well as microscopic analyses with the use of the FISH (fluorescence in situ hybridization) method were carried out. Moreover, the level of electric energy consumption during the operation of the wastewater treatment plant and problems related to fouling were also discussed. A wastewater quality analysis confirmed the high efficiency of removing organic impurities (on average 96% in case of BOD5 and 94% in case of COD) and suspension (on average 93%).


2013 ◽  
Vol 69 (5) ◽  
pp. 1021-1027 ◽  
Author(s):  
W. Yang ◽  
W. Syed ◽  
H. Zhou

This study compared the performance between membrane-coupled moving bed biofilm reactor (M-MBBR) and a conventional membrane bioreactor (MBR) in parallel. Extensive tests were conducted in three pilot-scale experimental units over 6 months. Emphasis was placed on the factors that would affect the performance of membrane filtration. The results showed that the concentrations of soluble microbial product (SMP), colloidal total organic carbon and transparent exopolymer particles in the M-MBBR systems were not significantly different from those in the control MBR system. However, the fouling rates were much higher in the M-MBBR systems as compared to the conventional MBR systems. This indicates membrane fouling potential was related not only to the concentration of SMP, but also to their sources and characteristics. The addition of polyaluminum chloride could reduce the fouling rate of the moving bed biofilm reactor unit by 56.4–84.5% at various membrane fluxes.


Sign in / Sign up

Export Citation Format

Share Document