scholarly journals The role of wastewater treatment plants in surface water contamination by plastic pollutants

2018 ◽  
Vol 45 ◽  
pp. 00054 ◽  
Author(s):  
Bozena Mrowiec

The aim of this paper was to review the literature data regarding the physico-chemical characteristic of plastic pollutants discharged with municipal sewage, the practical possibility of removing microplastic particles from wastewater during different treatment steps in WWTPs and the problem of surface water contamination within them. Microplastics (the size range of 1 nm to < 5 mm), have been recognized as an emerging threat, as well as an ecotoxicological and ecological risk for water ecosystems. Municipal wastewater treatment plants (WWTPs) are mentioned as the main point sources of microplastics in an aquatic environment. Microplastic particles can be effectively removed in the primary treatment zones via solids skimming and sludge settling processes. Different tertiary treatment processes such as: gravity sand filtration, discfilter, air flotation and membrane filtration provide substantial additional removal of microplastics, and the efficiency of wastewater treatment process can be at a removal level of 99.9%. Nevertheless, given the large volumes of effluent constantly discharged to receivers, even tertiary level WWTPs may constitute a considerable source of microplastics in the surface water.

2020 ◽  
Vol 15 (1) ◽  
pp. 160-169 ◽  
Author(s):  
Yeshi Cao ◽  
M. C. M. Van Loosdrecht ◽  
Glen. T. Daigger

Abstract Since about the 1990s China has achieved remarkable progress in urban sanitation. The country has built very extensive infrastructure for wastewater treatment, with 94.5% treatment coverage in urban areas and legally mandated nation-wide full nutrient removal implemented. However, municipal wastewater treatment plants (WWTPs) in China are still confronted with issues rooted in the unique sewage characteristics. This study compares energy recovery, cost of nutrient removal and sludge production between Chinese municipal WWTPs and those in countries with longer wastewater treatment traditions, and highlights the cause-effect relationships between Chinese sewage characteristics – high inorganic suspended solids (ISS) loads, and low COD and C/N ratio, and municipal WWTP process performance in China. Integrated design and operation guidelines for municipal WWTPs are imperative in relation to the unique sewage characteristics in China. Cost-effective measures and solutions are proposed in the paper, and the potential benefits of improving the sustainability of municipal WWTPs in China are estimated.


2020 ◽  
Vol 29 (2) ◽  
pp. 123-135
Author(s):  
Libor Ansorge ◽  
Elžbieta Čejka ◽  
Jiří Dlabal ◽  
Lada Stejskalová

Surface water pollution is referred to be a problem in the entire Odra river basin. In sub-basins, an insufficient degree of wastewater treatment has been identified as a major problem – in relation to the best available technologies and environmental objectives of Directive 2000/60/EC. The grey water footprint indicator was used to express the influence of point sources of pollution (industrial and municipal wastewater treatment plants) on discharged pollution reduction in the Czech part of the international Odra river basin. The number of 391 records of wastewater treatment plants for the period 2004–2018 was analysed. The results show that the wastewater treatment plants reduce by up to 92% the potential water needs for dilution of pollution discharged into waters in the Czech part of the Odra river basin.


2002 ◽  
Vol 46 (4-5) ◽  
pp. 293-299 ◽  
Author(s):  
H. Steinmetz ◽  
J. Wiese ◽  
T.G. Schmitt

Four wastewater treatment plants running with sequencing batch reactor (SBR) technology have been evaluated in view of their effluent quality, treatment efficiency and energy demand. The plants are designed for approximately 5,000, 8,000, 15,000 and 25,000 population equivalents (p.e.). Although two of the plants were overloaded during the investigation time the effluent concentrations of nitrogen, especially ammonia, and phosphorus were low. The results show, that SBR plants which are designed according to German standards have additional capacities for degradation of organic matter and removal of nitrogen and phosphorus. Furthermore SBR plants with combined sewer systems are able to treat combined sewage very well. Thus SBR technology proves to be a good alternative for municipal sewage plants and can help to save investment costs.


2012 ◽  
Vol 40 (5) ◽  
pp. 479-486 ◽  
Author(s):  
Marek Holba ◽  
Karel Plotěný ◽  
Lukáš Dvořák ◽  
Marcel Gómez ◽  
Iveta Růžičková

Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2850
Author(s):  
Yinan Zhang ◽  
Shihuan Lu ◽  
Yuxin Fang ◽  
Kexin Yang ◽  
Jiafeng Ding ◽  
...  

The efficient removal of carbon (COD) and nitrogen (NH3-N) is vital to improving tailwater from municipal wastewater treatment plants. In this study, denitrification and decarburization bacteria with stable removal efficiencies were introduced into a membrane bioreactor (MBR) for 45 days of field experiments in a QJ Wastewater Treatment Plant (Hangzhou, China) to enhance carbon and nitrogen removal. After adding the decarbonization microorganisms into the denitrification reactor, COD removal increased from 31.2% to 80.2%, while compared to the same MBR with only denitrification microorganisms, the removal efficiency of NH3-N was greatly increased from 76.8% to 98.6%. The results of microbial analysis showed that the cooccurrence of Proteobacteria and Bacillus with high abundance and diverse bacteria, such as Chloroflexi, with autotrophic decarburization functions might account for the synchronous high removal efficiency for NH3-N and COD. This technology could provide a reference for industrial-scale wastewater treatment with the goal of simultaneous nitrogen and carbon removal.


2008 ◽  
Vol 58 (1) ◽  
pp. 59-66 ◽  
Author(s):  
M. Clara ◽  
S. Scharf ◽  
S. Weiss ◽  
O. Gans ◽  
C. Scheffknecht

Effluents of wastewater treatment plants are relevant point sources for the emission of hazardous xenobiotic substances to the aquatic environment. One group of substances, which recently entered scientific and political discussions, is the group of the perfluorinated alkylated substances (PFAS). The most studied compounds from this group are perfluorooctanoic acid (PFOA) and perfluorooctane sulphonate (PFOS), which are the most important degradation products of PFAS. These two substances are known to be persistent, bioaccumulative and toxic (PBT). In the present study, eleven PFAS were investigated in effluents of municipal wastewater treatment plants (WWTP) and in industrial wastewaters. PFOS and PFOA proved to be the dominant compounds in all sampled wastewaters. Concentrations of up to 340 ng/L of PFOS and up to 220 ng/L of PFOA were observed. Besides these two compounds, perfluorohexanoic acid (PFHxA) was also present in nearly all effluents and maximum concentrations of up to 280 ng/L werde measured. Only N-ethylperfluorooctane sulphonamide (N-EtPFOSA) and its degradation/metabolisation product perfluorooctane sulphonamide (PFOSA) were either detected below the limit of quantification or were not even detected at all. Beside the effluents of the municipal WWTPs, nine industrial wastewaters from six different industrial branches were also investigated. Significantly, the highest emissions or PFOS were observed from metal industry whereas paper industry showed the highest PFOA emission. Several PFAS, especially perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluorododecanoic acid (PFDoA) and PFOS are predominantly emitted from industrial sources, with concentrations being a factor of 10 higher than those observed in the municipal WWTP effluents. Perfluorodecane sulphonate (PFDS), N-Et-PFOSA and PFOSA were not detected in any of the sampled industrial point sources.


2011 ◽  
Vol 6 (1) ◽  
Author(s):  
A. Iborra-Clar ◽  
J.A. Mendoza-Roca ◽  
A. Bes-Pií ◽  
J.J. Morenilla-Martínez ◽  
I. Bernácer-Bonora ◽  
...  

Rainfall diminution in the last years has entailed water scarcity in plenty of European regions, especially in Mediterranean areas. As a consequence, regional water authorities have enhanced wastewater reclamation and reuse. Thus, the implementation of tertiary treatments has become of paramount importance in the municipal wastewater treatment plants (WWTP) of Valencian Region (Spain). Conventional tertiary treatments consist of a physico-chemical treatment of the secondary effluent followed by sand filtration and UV radiation. However, the addition of coagulants and flocculants sometimes does not contribute significantly in the final water quality. In this work, results of 20-months operation of three WWTP in Valencian Region with different tertiary treatments (two without chemicals addition and another with chemicals addition) are discussed. Besides, experiments with a 2 m3/h pilot plant located in the WWTP Quart-Benager in Valencia were performed in order to evaluate with the same secondary effluent the effect of the chemicals addition on the final water quality. Results showed that the addition of chemicals did not improve the final water quality significantly. These results were observed both comparing the three full scale plants and in the pilot plant operation.


Sign in / Sign up

Export Citation Format

Share Document