Hydrochemical Characteristics and Water Quality Assessment of Groundwater in Daxing District of Beijing, China

2013 ◽  
Vol 295-298 ◽  
pp. 696-700
Author(s):  
Mu Zi Li ◽  
Yuan Zheng Zhai ◽  
Jun Zhou ◽  
Jin Sheng Wang

Based on the groundwater samples collected in Daxing District of Beijing in June and October 2008, the groundwater quality is assessed and the groundwater hydrochemical characteristics are analyzed. The assessment of groundwater quality is conducted by using the F-value comprehensive assessment method, and GIS approach is used to obtain the zonation of groundwater quality. The results show that the groundwater quality is classified into II, III and IV class, and the groundwater quality gradually changes well from north to south. The groundwater of IV class is located in the northern part, which accounts for about 40% of the total area, and the major pollution factors are TDS and nitrate. The groundwater is mainly characterized by HCO3-Ca•Mg type. The concentrations of SO42-, NO3-, Ca2+ and TDS follow a decreasing trend generally from north to south, all of which have slight seasonal changes. Both natural factors and human activities have impacts on the chemical composition of the groundwater. The protection of groundwater environment in northern Daxing should be taken more seriously.

2020 ◽  
Vol 26 (1) ◽  
pp. 36
Author(s):  
Sepridawati Siregar ◽  
Desi Kiswiranti

AbstrakSungai Klampok mengalir melalui Kecamatan Bergas dan sekelilingnya terdapat beberapa industri sehingga mengakibatkan sungai tersebut tercemar karena menjadi badan penerima air limbah. Akibat penurunan kualitas air Sungai Klampok akan berimbas pada penurunan kualitas air tanah yang digunakan oleh penduduk sekitar sungai tersebut. Penelitian ini bertujuan untuk mengetahui kualitas air tanah yang berada di sekitar Sungai Klampok sebagai akibat adanya pengaruh beban pencemaran oleh air limbah industri berdasarkan Permenkes No. 416/MENKES/PER/IX/1990 tentang persyaratan kualitas air bersih. Lokasi pengambilan sampel air sungai dibagi menjadi 3 stasiun (LK1, LK2 dan LK3) sedangkan untuk sampel airtanah dari rumah-rumah penduduk dilakukan pada 6 titik yaitu 3 titik di daerah utara dari Sungai Klampok (U1,U2, U3) dan 3 titik di daerah selatan dari Sungai Klampok (S1,S2, S3). Pengambilan sampel dilakukan pada musim kemarau. Dari hasil uji kualitas air sungai, pencemaran yang terjadi pada air sungai Klampok masuk dalam kategori tercemar ringan-sedang. Sedangkan hasil uji kualitas air tanah masih berada di bawah baku mutu yang disyaratkan oleh Permenkes No. 416/MENKES/PER/IX/1990, sehingga penurunan kualitas air sungai Klampok tidak mempengaruhi kualitas air tanah di sekitar sungai tersebut. AbstractThe Klampok River flows through the Bergas Subdistrict and there are a number of industries around it, causing the river to become polluted because it becomes the body of the recipient of wastewater. As a result of the decline in the quality of the water in the Klampok River, it will impact on the quality of groundwater used by residents around the river. This study aims to determine the quality of groundwater around the Klampok River as a result of the influence of pollution load by industrial wastewater based on Permenkes No. 416 / MENKES / PER / IX / 1990 concerning requirements for clean water quality. The location of river water sampling is divided into 3 stations (LK1, LK2, and LK3) while for groundwater samples from residential houses is carried out at 6 points, namely 3 points in the northern area of Klampok River (U1, U2, U3) and 3 points in the area south of the Klampok River (S1, S2, S3). Sampling is done in the dry season. From the results of the test of river water quality, pollution that occurs in Klampok river water is categorized as mild-moderate polluted. While the results of groundwater quality testing are still below the quality standards required by Permenkes No. 416 / MENKES / PER / IX / 1990 so that the decline in the water quality of the Klampok river does not affect the quality of groundwater around the river.


Author(s):  
Nguyen Hai Au ◽  
Tran Minh Bao ◽  
Pham Thi Tuyet Nhi ◽  
Tat Hong Minh Vy ◽  
Truong Tan Hien ◽  
...  

Groundwater in Phu My town is exploited essentially in Pleistocene aquifer and, used for many purposes like irrigation, domestic, production and animal husbandry. In this study, Groundwater Quality Index (EWQI) is calculated with Entropy weight method to determine the suitability of groundwater quality in study area. This method demonstrates the objectivity of each parameter calculated based on the degree of variability of each value and depends on the sample data source. The groundwater samples were collected from 17 wells in dry and wet seasons in 2017 with ten water quality parameters (pH, TDS, TH, Cl-, F-, NH4+-N, NO3--N, SO42-, Pb và Fe2+) were selected for analysising. The analysis results indicate groundwater quality is divided into 4 categories in this study area. In particular, over 70% of wells are "very good" water quality in both dry and wet seasons. Only 6% of wells are " water unsuitable for drinking purpose" of the total number of mornitoring wells in the study area.


2019 ◽  
Vol 19 (5) ◽  
pp. 1572-1578 ◽  
Author(s):  
Huili Qiu ◽  
Herong Gui ◽  
Lin Cui ◽  
Zhenggao Pan ◽  
Biao Lu

Abstract Major ion and trace element concentrations in shallow groundwater of Linhuan coal-mining district, Northern Anhui Province, China, were analyzed to determine its hydrogeochemical characteristics and to assess drinking and irrigation water quality. The relative abundance of cations and anions was Na+ > Mg2+ > Ca2+ > K+, and HCO3− > SO42− > Cl− > NO3−, respectively. The concentrations of Na+, HCO3−, NO3−, and total dissolved solids (TDS), and the electric conductivity (EC) values in some samples were higher than the permissible limits of the Water Health Organization (WHO). Gibbs diagrams showed that rock weathering mainly controlled the major ion chemistry of the groundwater, and the first aquifer of this study area had a weak hydraulic connection with atmospheric precipitation. The calculated sodium percentage (%Na) and sodium adsorption ratio (SAR) revealed that the slight sodium and high salinity hazards needed to be controlled before irrigation. According to the fuzzy comprehensive assessment, the groundwater samples were classified into four categories. The results showed that 92.86% of the groundwater samples were suitable for drinking use. For human health, the NO3− and Mn levels in the groundwater should be reduced before drinking, and treatment of the high salinity hazards is required before irrigation.


2021 ◽  
Author(s):  
Arvind Chandra Gauns ◽  
M. Nagarajan ◽  
R. Lalitha ◽  
M. Baskar

Abstract Increasing population, erratic distribution of rainfall, and their rising demand for water in domestic and irrigation is fulfilled by groundwater resources. Due to overexploitation, there is the deterioration of groundwater quality and hence to evaluate the groundwater quality, a study was undertaken to understand the water suitability for drinking as well as for irrigation purposes. For this study, five villages namely Kumulur, Tachankurunchi, Pudurutamanur, Pandaravadai, and Poovalur were selected from Trichy District, Tamil Nadu, India with an areal extent of 45.1 km2. For the water quality assessment, samples were drawn from 53 locations from the sources like open well, bore well and hand pumps, etc., Parameters of pH, EC, TDS, Anions - CO3 2−, HCO3−, Cl−, SO4 2−, Cations - Ca2+, Mg2+, B3+, Na+ and potassium (K+) were estimated using the standard analytical procedure in three different seasons Viz., S-I (September 2019), S-II (December 2019) and S-III (March 2020). The WQI was computed for drinking water quality and it was found that 25% samples in S-I, 80% samples in S-II, and 83% samples in S-III were above the permissible limit for drinking purposes. Indices like Sodium Percentage, Sodium Adsorption Ratio, Permeability Index, Kelly’s Ratio, Magnesium Hazard Ratio, Potential Salinity, USSL Diagram, Wilcox Plot, Piper Diagram, and Gibbs plot were evaluated for examining irrigation water quality. The results revealed that 90% of the area, the water is suitable for irrigation purposes and a few locations (10%) wherein the salt content of water are relatively higher than the entire study area.


2020 ◽  
Vol 9 (3) ◽  
pp. 237-254
Author(s):  
Maeyan Givi ◽  
◽  
Mahsa Jahangiri-Rad ◽  
Hamidreza Tashauoei ◽  
◽  
...  

Background: The physicochemical composition of groundwater is affected by the quantity and quality of surrounding aquifers which are in turn recharging from adjacent river waters. Methods: In the present study, 20 surface and 16 groundwater samples were collected in pre- and post-monsoon season from the Jajrood River basin, Tehran, Iran. The samples were analyzed for 18 physicochemical water quality characteristics to assess the river and groundwater qualities. Hydrogeochemical analyses of groundwater samples were also performed to determine the Water Quality Index (WQI) for drinking and evaluate factors governing the water quality characteristic in the study area. Accordingly, the Piper diagram and Gibbs and Chadha plots were drawn to assess seasonal variations in hydrochemical facies and processes in the basin. Subsurface soil samples were also examined with respect to the structure, elemental composition, and multi-elemental trace analysis. Results: Results showed the abundance of major ions in the order of Ca+2 >Na+>Mg+2>K+ for cations and HCO3- >SO42- >Cl- >NO3- >F- for anions. In general, all drinking groundwater samples met WHO permissible limits except for Chemical Oxygen Demand (COD) and HCO3-. Moreover, the water is categorized as Ca-Mg-HCO3 type. Subsurface soil analyses demonstrated quartz and calcium carbonate as the main phases of soil structure, suggesting the enrichment of groundwater with temporary hardness. Conclusion: Overall, the groundwater quality was suitable for drinking and agricultural activities.


Sign in / Sign up

Export Citation Format

Share Document