Analysis of Platen Die-Cutting Mechanism Based on the Axiomatic Design Theory

2013 ◽  
Vol 312 ◽  
pp. 796-799
Author(s):  
Xiang Dong Shi ◽  
Yan Li ◽  
Hao Dong Li

In this paper, the basic theory of Axiomatic Design is introduced at first. Then the design process of the platen die-cutting mechanism is analyzed based on the basic concept and design process of axiomatic design. The functional requirements of the die-cutting mechanism, and the mapping and decomposition processes between designing parameters were presented. This provides the scientific basis for evaluating the rationality of the mechanism design, and plays a guiding role on design.

Author(s):  
Mats Nordlund ◽  
Taesik Lee ◽  
Sang-Gook Kim

In 1977, Nam P Suh proposed a different approach to design research. Suh’s approach was different in that it introduced the notions of domains and layers in a 2-D design thinking and stipulated a set of axioms that describes what is a good design. Following Suh’s 2-D reasoning structure in a zigzagging manner and applying these axioms through the design process should enable the designer to arrive at a good design. In this paper, we present our own experiences in applying Suh’s theories to software design, product design, organizational design, process design, and more in both academic and industrial settings. We also share our experience from teaching the Axiomatic Design theory to students at universities and engineers in industry, and draw conclusions on how best to teach and use this approach, and what results one can expect. The merits of the design axioms are discussed based on the practical experiences that the authors have had in their application. The process developed around the axioms to derive maximum value (solution neutral environment, design domains, what-how relationship, zig-zag process, decomposition, and design matrices) is also discussed and some updates are proposed.


2018 ◽  
Vol 223 ◽  
pp. 01021
Author(s):  
Oana Dodun ◽  
Ema Panaite ◽  
Petru Duşa ◽  
Gheorghe Nagît ◽  
Margareta Coteată ◽  
...  

Ultrasonic abrasive cavitational machining is a nonconventional machining method applied to remove surfaces in workpieces made of brittle, hard, or non-conductive materials that cannot be efficiently machined by other classical or nonconventional machining methods. Among the factors that can affect the values of the parameters of technological interest for the ultrasonic machining process, the relative pressure between the ultrasonic tool and the workpiece surface to be machined could be considered. The main objective of the research presented in this paper was to analyze the possibilities of selecting the most convenient solution among many such available solutions to ensure the tool feed motion, when designing a device for achieving an ultrasonic drilling process. At present, this selection could be achieved by means of an optimal selection method. Taking into consideration some functional requirements of the device, the method of analytic hierarchy process and the axiomatic design theory were used to solve some problems met in the design process.


2019 ◽  
Vol 301 ◽  
pp. 00015
Author(s):  
Wenguang Lin ◽  
Renbin Xiao ◽  
Rongshen Lai ◽  
Xiaozhen Guo

Axiomatic design theory is widely used in new product development by providing design solutions through mapping between functional requirements and design parameters. However, the theory does not provide a method to help designer obtain and select design parameters. To this end, this paper introduces patent analysis to overcome the deficiency. Firstly, functional requirements are transformed into patent search terms, and design parameters are obtained from patents. Secondly, morphological matrix is used to represent the relationships between target function and multiple design parameters. Thirdly, design parameters with higher patent frequency are chose and combined into a new scheme. Finally, the scheme is evaluated by the independent axiom of Axiomatic Design theory. The methodology is demonstrated and validated with a case study of spa shower.


Author(s):  
Bin Chen ◽  
Jie Hu ◽  
Jin Qi ◽  
Weixing Chen

AbstractIn the traditional Axiomatic Design (AD) theory, the mapping from the functional domain to the physical domain is based on the designers’ own knowledge and experience, and there is no systematical approach including the design resources provided outside the designers themselves’ access. Thus, the raw materials for the design process are largely limited, which means they can hardly support the designers’ increasingly creative and innovative conceptions. To help AD theory better support the design process, this paper proposes a computer-aided approach for the mapping from the functional domain to the physical domain within a distributed design resource environment, which consists of numerous design resources offered on the Internet by the providers widely distributed in different locations, institutes, and disciplines. To prove the feasibility of this proposed approach, a software prototype is established, and a natural leisure hotel is designed as an implementation case.


2015 ◽  
Vol 131 ◽  
pp. 1050-1063 ◽  
Author(s):  
Manabu Sawaguchi ◽  
Shintaro Ishikawa ◽  
Heikan Izumi

2018 ◽  
Vol 223 ◽  
pp. 01006 ◽  
Author(s):  
Kate Kujawa ◽  
Jakob Weber ◽  
Erik Puik ◽  
Kristin Paetzold

Automotive production is faced with the challenge of bringing new products to market faster, with decreasing turn-around times, meaning production must be continually changing to accommodate new products. This paper proposes an approach to decrease a product’s time-to-market, by increasing the efficiency of automotive assembly unit design. Providing designers with conceptual information about future vehicle models early in the product design process, could shift the design start forward and enable a more efficient transition process. Large automotive companies work on vehicle design and development for years before a product is ready for production. If during these earlier stages of product design, significant changes are identified and communicated to production designers, the manufacturing system design can get a jump start with an early exploration phase. A method exists, which uses the Axiomatic Design theory to develop Reconfigurable Manufacturing Systems through a modular breakdown. A similar method Adapt! employs Axiomatic Design and Scrum to develop changeable or adaptable production systems. This paper proposes to extend the Adapt! method to include an exploration phase, which through early communication, provides an overview of the required design process, and enables faster identification of the critical design challenges. A case study is performed by analysing a currently produced vehicle and its future electric version.


Author(s):  
P Almström ◽  
P Märtensson

The axiomatic design theory as stated by Suh has proven useful when designing products, and this success has led to an increasing interest in applying the theory to manufacturing systems development. The theory states that functional couplings should be avoided in general. However, manufacturing systems are potentially coupled in many ways, the most obvious being that manufacturing operations usually are performed in a sequence. Functional coupling is defined as a dependence between functional requirements. The subject of couplings in manufacturing systems is not extensively explored or described in the literature, and specifically not in relation to the axiomatic design theory. Five different categories of couplings in manufacturing systems are described and exemplified in this paper. Couplings can be designed into the manufacturing system for a diverse range of reasons, e.g. selection of manufacturing processes or materials, but they may also be irrational, e.g. decisions based on political opinions.


Author(s):  
Prakash C. R. J. Naidu ◽  
Kshirsagar C. J. Naidu

This paper introduces a new approach named Design for Patentability (DFP) and presents the preliminary formulation of a formal methodology to attempt consideration of patentability aspects during the early stages of design including conceptual design and initial implementation of detailed design and manufacturing. Design for Automation (DFAM) approach formulated earlier by the first author based on Axiomatic Design Theory originated by Suh et. al. at MIT is adapted, suitably modified and customized for inclusion of patentability aspects such as anticipation, functionality, utility, and obviousness. Highlighting the complexity in incorporation of legal aspects in an engineering methodology, the paper presents the possibilities of improving the patentability of a design by a systematic and considered approach. The proposed methodology introduces a Patentability Evaluation phase in-between the Product Design, Process Design and Automation System Design phases of DFAM. The paper reviews mapping of parameters between different domains, namely, Functional Requirements Domain, Design Parameters Domain, Process Requirements Domain, and Design Automation Parameters Domain encompassed in the DFAM methodology and includes Patentability Parameters Domain in parallel to the last three domains to enable possible consideration of patentability aspects during Product Design, Process Design, and Automation System Design. Further, the paper briefly discusses the relevance of the Information Axiom of the Axiomatic Design Theory in the context of preparation of preliminary drafts of invention disclosure and potential claims for perusal by patent agents or attorneys. The approach reported in the paper is expected to have broad applications in the growing field of innovation based entrepreneurship in which design for patentability is an essential requirement for success of a business venture.


Author(s):  
T. H. KOH ◽  
F. E. H. TAY ◽  
M. W. S. LAU ◽  
E. LOW ◽  
G. SEET

In this paper, Axiomatic Design (AD) theory was adopted for the design analysis of an underactuated Remotely Operated Vehicle (ROV) system and its subcomponents. The system design issues of the Propulsion and Control System of the ROV II are analyzed and addressed based on the Independence Axiom methodology. The top-level Functional Requirements (FRs) for the thruster design and configuration are identified and its corresponding Design Parameters (DPs) are also presented.


2015 ◽  
Vol 32 (1) ◽  
pp. 3-17
Author(s):  
Naresh K. Sharma ◽  
Elizabeth A. Cudney

Purpose – Complexity is an important element in axiomatic design theory. The current method for calculating complexity for a system following normal distribution is unbounded and approximate. The purpose of this paper is to present a detailed bounded solution for complexity using design and system ranges on a single function requirement. Design/methodology/approach – This paper discusses the complexity measure for a system following a uniform distribution. The complexities of two types of systems, a system performing with a uniform distribution and a system performing on target according to a normal distribution are then considered and compared. The research proposes a complexity measure for a system performing within specification limits with a uniform distribution. In addition, a new concept of relative complexity is proposed. Findings – A bounded solution for complexity for a normal distribution based on the existing assumptions was given which includes bias in addition to variance. The bounded solution was then compared to the existing approximate solution from the variance as well as bias standpoint. It was found that bias has an inappropriately reverse relationship with the bounded solution of complexity. Therefore, complexity cannot be used to approximate the system improvement when the improvement is based on a reduction in bias. Originality/value – The current method for calculating complexity for a system following normal distribution is unbounded and approximate. This paper proposed a complexity measure for a system performing within specification limits with a uniform distribution.


Sign in / Sign up

Export Citation Format

Share Document