Study on Energy Distribution of Single-Hole Blasting Vibration Signal Based on Wavelet Packet Transform

2013 ◽  
Vol 321-324 ◽  
pp. 1284-1289
Author(s):  
Dong Tao Li ◽  
Li Xin Xu ◽  
Yuan Yuan Sun ◽  
Qiu Rui Jia ◽  
Jing Long Yan

It is conducive to reducedamage of blasting vibration to realize energy distribution and attenuation lawof single-hole blasting vibration signal. With the measured single-holeblasting vibration velocity curves, used wavelet packet analysis technologywith high-resolution character, the law of energy distribution of single-holeblasting vibration signals in different frequency bands, and the effect ofblasting source and distance from the source on single-hole blasting vibrationsignal energy distribution were analysised. The results show that the energy ofsingle-hole blasting vibration signals attenuation very quickly in thefrequency domain concentration distribution in 0~100Hz; and distance from thesource has significant influence on energy distribution in the frequencydomain; The energy is mainly distributed in the low frequency band whendistance from the source is larger, which has guiding significance inmitigation of blast-induced vibrations.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Ke Man ◽  
Xiaoli Liu ◽  
Zhifei Song

Based on the blasting principle of the cutting seam cartridge, smooth blasting with the charge structures of the usual cartridge and cutting seam cartridge has been designed and implemented, respectively, for different peripheral holes in the same face. Meanwhile, the blasting vibration has been monitored. Through the analysis of the frequency spectrum of blasting vibration signals, it is found that the maximum blasting vibration velocity of the cutting seam cartridge charge is lower than that of the usual cartridge charge, from 0.21 m/s to 0.12 m/s. Moreover, the blasting energy distribution is more balanced. Especially in the low-frequency part, the blasting energy is less, and there is a transferring trend to the high-frequency part, which shows that the cutting seam cartridge charge has a better optimization effect. Furthermore, using wavelet packet analysis, the cutting seam cartridge charge could effectively reduce the energy concentration in the low-frequency part. The energy distribution is much more dispersed, and the disturbance to the structure could be less, which is conducive to the stability of the structure. According to the blasting effect, the overbreak and underexcavation quantity at the cutting seam cartridge charge is better than that at the usual cartridge charge.


2014 ◽  
Vol 1023 ◽  
pp. 198-204
Author(s):  
Li He ◽  
Dong Wang Zhong

As a physical carrier, blasting vibration signal includes much information about blasting method, explosive charge structure and propagation medium. Based on the indoor concrete slope test with millisecond blasting and wavelet pocket analysis technology, the blasting seismic signal was analyzed in the features of energy distribution in order to control the blasting vibration hazard better. The attenuation law of the energy and the peak vibration velocity (PPV) with distance decreased were researched. The effects of delayed time interval on PPV and energy are investigated, and the paper have analyzed the weakening degree of energy and PPV of vibration signals when damping ditch exists, so was its effect on the distribution of energy. The conclusions show that: the impact is great about delayed time interval on the total energy of signals in millisecond blasting; the damping ditch made the predominant frequency for energy concentrate on the low frequency band, damping effect of the damping ditch reduced with the delay time interval increasing. When the propagation distance increased, the attenuation trend of the PPV and total energy slowed down gradually near blasting area. The PPV and energy are not necessarily meanwhile the maximum; the energy of the vibration signal is not only determined by the PPV.


2011 ◽  
Vol 403-408 ◽  
pp. 1817-1822
Author(s):  
Xi Feng Zhou ◽  
Xiao Wu ◽  
Qian Gang Guo

The quality of ultrasonic flaw echo signal is the foundation of achieving qualitative and quantitative analysis in the in ultrasonic flaw detection. In practice, the flaw echo signals are often contaminated or even annihilation by random noise. According to the characteristics of ultrasonic flaw echo signal, wavelet packet has more accurate local analysis ability in low frequency and high frequency part. This paper discusses de-noising in ultrasonic signals based on wavelet packet analysis, and proposes an improved threshold approach for de-noising. The results show that: It remarkably raises the signal-to-noise ratio of ultrasonic flaw echo signal and improves the quality of signal with improved wavelet packet threshold.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Huaibao Chu ◽  
Xiaolin Yang ◽  
Shuanjie Li ◽  
Weimin Liang

The propagation and attenuation rule of blasting vibration wave parameters is the most important foundation of blasting vibration prediction and control. In this work, we pay more attention to the influence of the damage accumulation effect on the propagation and attenuation rule of vibration wave parameters. A blasting damage accumulation experiment was carried out, the ultrasonic wave velocity of the specimens was measured, and the damage value was calculated during the experiment. The blasting vibration wave was monitored on the surface of the specimens, and its energy was calculated by using the sym8 wavelet basis function. The experimental results showed that with the increase in the number of blasts, the damage continues to increase; however, the vibration velocity and the main frequency decrease continuously, the unfocused vibration wave energy in the zone near to the blasting source is rapidly concentrated in the low-frequency band (frequency bands 1 to 3), and the energy is further concentrated in the low-frequency band in the intermediate zone and zone far from the blasting source. There is a distortion process in which the vibration velocity and the main frequency increase slightly and the energy of the blasting vibration wave converges to the high-frequency band (the 5th band) before the sudden unstable fracture failure of the specimens. The experimental results indicate that the prediction and evaluation of blasting vibration should consider the variation rule of blasting vibration wave parameters synthetically based on the cumulative damage effect, and it is not safe to use only one fixed vibration control standard for the whole blasting operation.


2014 ◽  
Vol 599-601 ◽  
pp. 1738-1744
Author(s):  
Kai Zhao ◽  
Ben Wei Li ◽  
Jing Chen

Although many wavelet de-noising methods have been studied and proposed, the parameters of them are obtained by experience mostly, which makes the de-noising effect instable. To solve the issues, the solutions, such as the selection of wavelet function and threshold function, the calculation of decomposition levels, the optimal wavelet packet basis and the thresholds obtained based on QPSO, have been studied in this paper. Every parameter is obtained by calculation. This method is applied to the de-noising experiment of sine and vibration signals. Through the experimental verification, the effect of this de-noising method is obvious.


2018 ◽  
Vol 17 (02) ◽  
pp. 1850012 ◽  
Author(s):  
F. Sabbaghian-Bidgoli ◽  
J. Poshtan

Signal processing is an integral part in signal-based fault diagnosis of rotary machinery. Signal processing converts the raw data into useful features to make the diagnostic operations. These features should be independent from the normal working conditions of the machine and the external noise. The extracted features should be sensitive only to faults in the machine. Therefore, applying more efficient processing techniques in order to achieve more useful features that bring faster and more accurate fault detection procedure has attracted the attention of researchers. This paper attempts to improve Hilbert–Huang transform (HHT) using wavelet packet transform (WPT) as a preprocessor instead of ensemble empirical mode decomposition (EEMD) to decompose the signal into narrow frequency bands and extract instantaneous frequency and compares the efficiency of the proposed method named “wavelet packet-based Hilbert transform (WPHT)” with the HHT in the extraction of broken rotor bar frequency components from vibration signals. These methods are tested on vibration signals of an electro-pump experimental setup. Moreover, this project applies wavelet packet de-noising to remove the noise of vibration signal before applying both methods mentioned and thereby achieves more useful features from vibration signals for the next stages of diagnosis procedure. The comparison of Hilbert transform amplitude spectrum and the values and numbers of detected instantaneous frequencies using HHT and WPHT techniques indicates the superiority of the WPHT technique to detect fault-related frequencies as an improved form of HHT.


Sign in / Sign up

Export Citation Format

Share Document