Predicting RNA Secondary Structure Using a Improved BPSO Based on Stem Combination

2013 ◽  
Vol 325-326 ◽  
pp. 1551-1554
Author(s):  
Yi Qi

In this paper, we present an improved BPSO to predict RNA secondary structure to improve the performance with two new strategies. First one is to reduce the searching space of PSO through super stem set construction. Second is to modify the general BPSO updating process to settle stem permutation and combination problems. The experimental results show that the new method is effective for RNA structure prediction in terms of sensitivity and specificity by different sequence datasets including simple pseudoknot.

Author(s):  
Grace Meng ◽  
Marva Tariq ◽  
Swati Jain ◽  
Shereef Elmetwaly ◽  
Tamar Schlick

Abstract Summary We launch a webserver for RNA structure prediction and design corresponding to tools developed using our RNA-As-Graphs (RAG) approach. RAG uses coarse-grained tree graphs to represent RNA secondary structure, allowing the application of graph theory to analyze and advance RNA structure discovery. Our webserver consists of three modules: (a) RAG Sampler: samples tree graph topologies from an RNA secondary structure to predict corresponding tertiary topologies, (b) RAG Builder: builds three-dimensional atomic models from candidate graphs generated by RAG Sampler, and (c) RAG Designer: designs sequences that fold onto novel RNA motifs (described by tree graph topologies). Results analyses are performed for further assessment/selection. The Results page provides links to download results and indicates possible errors encountered. RAG-Web offers a user-friendly interface to utilize our RAG software suite to predict and design RNA structures and sequences. Availability and implementation The webserver is freely available online at: http://www.biomath.nyu.edu/ragtop/. Supplementary information Supplementary data are available at Bioinformatics online.


2012 ◽  
Vol 532-533 ◽  
pp. 1796-1799 ◽  
Author(s):  
Zhen Dong Liu ◽  
Da Ming Zhu

Pseudoknots are complicated and stable RNA structure. Based on the idea of iteratively forming stable stems, and the character that the stems in RNA molecules are relatively stable, an algorithm is presented to predict RNA secondary structure including pseudoknots, it is an improvement from the previously used algorithm ,the algorithm takes O(n3) time and O(n2) sapce , in predicting accuracy, it outperforms other known algorithm of RNA secondary structure prediction, its performance is tested with the RNA sub-sequences in PseudoBase. The experimental results indicate that the algorithm has good specificity and sensitivity.


2018 ◽  
Author(s):  
Riccardo Delli ponti ◽  
Alexandros Armaos ◽  
Stefanie Marti ◽  
Gian Gaetano Tartaglia

AbstractTo compare the secondary structures of RNA molecules we developed the CROSSalign method. CROSSalign is based on the combination of the Computational Recognition Of Secondary Structure (CROSS) algorithm to predict the RNA secondary structure at single-nucleotide resolution using sequence information, and the Dynamic Time Warping (DTW) method to align profiles of different lengths. We applied CROSSalign to investigate the structural conservation of long non-coding RNAs such as XIST and HOTAIR as well as ssRNA viruses including HIV. In a pool of sequences with the same secondary structure CROSSalign accurately recognizes repeat A of XIST and domain D2 of HOTAIR and outperforms other methods based on covariance modelling. CROSSalign can be applied to perform pair-wise comparisons and is able to find homologues between thousands of matches identifying the exact regions of similarity between profiles of different lengths. The algorithm is freely available at the webpage http://service.tartaglialab.com//new_submission/CROSSalign.


2019 ◽  
Author(s):  
Winston R. Becker ◽  
Inga Jarmoskaite ◽  
Kalli Kappel ◽  
Pavanapuresan P. Vaidyanathan ◽  
Sarah K. Denny ◽  
...  

AbstractNearest-neighbor (NN) rules provide a simple and powerful quantitative framework for RNA structure prediction that is strongly supported for canonical Watson-Crick duplexes from a plethora of thermodynamic measurements. Predictions of RNA secondary structure based on nearest-neighbor (NN) rules are routinely used to understand biological function and to engineer and control new functions in biotechnology. However, NN applications to RNA structural features such as internal and terminal loops rely on approximations and assumptions, with sparse experimental coverage of the vast number of possible sequence and structural features. To test to what extent NN rules accurately predict thermodynamic stabilities across RNAs with non-WC features, we tested their predictions using a quantitative high-throughput assay platform, RNA-MaP. Using a thermodynamic assay with coupled protein binding, we carried out equilibrium measurements for over 1000 RNAs with a range of predicted secondary structure stabilities. Our results revealed substantial scatter and systematic deviations between NN predictions and observed stabilities. Solution salt effects and incorrect or omitted loop parameters contribute to these observed deviations. Our results demonstrate the need to independently and quantitatively test NN computational algorithms to identify their capabilities and limitations. RNA-MaP and related approaches can be used to test computational predictions and can be adapted to obtain experimental data to improve RNA secondary structure and other prediction algorithms.Significance statementRNA secondary structure prediction algorithms are routinely used to understand, predict and design functional RNA structures in biology and biotechnology. Given the vast number of RNA sequence and structural features, these predictions rely on a series of approximations, and independent tests are needed to quantitatively evaluate the accuracy of predicted RNA structural stabilities. Here we measure the stabilities of over 1000 RNA constructs by using a coupled protein binding assay. Our results reveal substantial deviations from the RNA stabilities predicted by popular algorithms, and identify factors contributing to the observed deviations. We demonstrate the importance of quantitative, experimental tests of computational RNA structure predictions and present an approach that can be used to routinely test and improve the prediction accuracy.


2020 ◽  
Vol 15 (2) ◽  
pp. 135-143
Author(s):  
Sha Shi ◽  
Xin-Li Zhang ◽  
Le Yang ◽  
Wei Du ◽  
Xian-Li Zhao ◽  
...  

Background: The prediction of RNA secondary structure using optimization algorithms is key to understand the real structure of an RNA. Evolutionary algorithms (EAs) are popular strategies for RNA secondary structure prediction. However, compared to most state-of-the-art software based on DPAs, the performances of EAs are a bit far from satisfactory. Objective: Therefore, a more powerful strategy is required to improve the performances of EAs when applied to the prediciton of RNA secondary structures. Methods: The idea of quantum computing is introduced here yielding a new strategy to find all possible legal paired-bases with the constraint of minimum free energy. The sate of a stem pool with size N is encoded as a population of QGA, which is represented by N quantum bits but not classical bits. The updating of populations is accomplished by so-called quantum crossover operations, quantum mutation operations and quantum rotation operations. Results: The numerical results show that the performances of traditional EAs are significantly improved by using QGA with regard to not only prediction accuracy and sensitivity but also complexity. Moreover, for RNA sequences with middle-short length, QGA even improves the state-of-art software based on DPAs in terms of both prediction accuracy and sensitivity. Conclusion: This work sheds an interesting light on the applications of quantum computing on RNA structure prediction.


2017 ◽  
Vol 1 (3) ◽  
pp. 275-285 ◽  
Author(s):  
Bernhard C. Thiel ◽  
Christoph Flamm ◽  
Ivo L. Hofacker

We summarize different levels of RNA structure prediction, from classical 2D structure to extended secondary structure and motif-based research toward 3D structure prediction of RNA. We outline the importance of classical secondary structure during all those levels of structure prediction.


2018 ◽  
Author(s):  
Osama Alaidi ◽  
Fareed Aboul-ela

ABSTRACTThe realization that non protein-coding RNA (ncRNA) is implicated in an increasing number of cellular processes, many related to human disease, makes it imperative to understand and predict RNA folding. RNA secondary structure prediction is more tractable than tertiary structure or protein structure. Yet insights into RNA structure-function relationships are complicated by coupling between RNA folding and ligand binding. Here, we introduce a simple statistical mechanical formalism to calculate perturbations to equilibrium secondary structure conformational distributions for RNA, in the presence of bound cognate ligands. For the first time, this formalism incorporates a key factor in coupling ligand binding to RNA conformation: the differential affinity of the ligand for a range of RNA-folding intermediates. We apply the approach to the SAM-I riboswitch, for which binding data is available for analogs of intermediate secondary structure conformers. Calculations of equilibrium secondary structure distributions during the transcriptional “decision window” predict subtle shifts due to the ligand, rather than an on/off switch. The results suggest how ligand perturbation can release a kinetic block to the formation of a terminator hairpin in the full-length riboswitch. Such predictions identify aspects of folding that are most affected by ligand binding, and can readily be compared with experiment.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Gang Wang ◽  
Wen-yi Zhang ◽  
Qiao Ning ◽  
Hui-ling Chen

Prediction of RNA structure is a useful process for creating new drugs and understanding genetic diseases. In this paper, we proposed a particle swarm optimization (PSO) and ant colony optimization (ACO) based framework (PAF) for RNA secondary structure prediction. PAF consists of crucial stem searching (CSS) and global sequence building (GSB). In CSS, a modified ACO (MACO) is used to search the crucial stems, and then a set of stems are generated. In GSB, we used a modified PSO (MPSO) to construct all the stems in one sequence. We evaluated the performance of PAF on ten sequences, which have length from 122 to 1494. We also compared the performance of PAF with the results obtained from six existing well-known methods, SARNA-Predict, RnaPredict, ACRNA, PSOfold, IPSO, and mfold. The comparison results show that PAF could not only predict structures with higher accuracy rate but also find crucial stems.


Sign in / Sign up

Export Citation Format

Share Document