scholarly journals THE SUITABILITY OF TERRESTRIAL LASER SCANNING FOR BUILDING SURVEY AND MAPPING APPLICATIONS

Author(s):  
N. A. S. Russhakim ◽  
M. F. M. Ariff ◽  
Z. Majid ◽  
K. M. Idris ◽  
N. Darwin ◽  
...  

<p><strong>Abstract.</strong> The popularity of Terrestrial Laser Scanner (TLS) has been introduced into a field of surveying and has increased dramatically especially in producing the 3D model of the building. The used of terrestrial laser scanning (TLS) is becoming rapidly popular because of its ability in several applications, especially the ability to observe complex documentation of complex building and observe millions of point cloud in three-dimensional in a short period. Users of building plan usually find it difficult to translate the traditional two-dimensional (2D) data on maps they see on a flat piece of paper to three-dimensional (3D). The TLS is able to record thousands of point clouds which contains very rich of geometry details and made the processing usually takes longer time. In addition, the demand of building survey work has made the surveyors need to obtain the data with full of accuracy and time saves. Therefore, the aim of this study is to study the limitation uses of TLS and its suitability for building survey and mapping. In this study, the efficiency of TLS Leica C10 for building survey was determined in term of its accuracy and comparing with Zeb-Revo Handheld Mobile Laser Scanning (MLS) and the distometer. The accuracy for scanned data from both, TLS and MLS were compared with the Distometer by using root mean square error (RMSE) formula. Then, the 3D model of the building for both data, TLS and MLS were produced to analyze the visualization for different type of scanners. The software used; Autodesk Recap, Autodesk Revit, Leica Cyclone Software, Autocad Software and Geo Slam Software. The RMSE for TLS technique is 0.001<span class="thinspace"></span>m meanwhile, RMSE for MLS technique is 0.007<span class="thinspace"></span>m. The difference between these two techniques is 0.006<span class="thinspace"></span>m. The 3D model of building for both models did not have too much different but the scanned data from TLS is much easier to process and generate the 3D model compared to scanned data from MLS. It is because the scanned data from TLS comes with an image, while none from MLS scanned data. There are limitations of TLS for building survey such as water and glass window but this study proved that acquiring data by TLS is better than using MLS.</p>

Author(s):  
N. A. S. Russhakim ◽  
M. F. M. Ariff ◽  
N. Darwin ◽  
Z. Majid ◽  
K. M. Idris ◽  
...  

<p><strong>Abstract.</strong> During the recent years, the used of terrestrial laser scanning (TLS) is becoming rapidly popular because of its ability in several applications, especially the ability to observe complex documentation of complex building and observe millions of point cloud in three-dimensional in a short period. Users of strata plan usually find it difficult to translate the traditional two-dimensional (2D) data on maps they see on a flat piece of paper to three-dimensional (3D). The TLS is able to record thousands of point clouds which contains very rich of geometry details and made the processing usually takes longer time. In addition, the demand of strata survey work has made the surveyors need to obtain the data with full of accuracy and time saves. Therefore, the aim of this study is to study the limitation uses of TLS and its suitability for strata building survey. In this study, the efficiency of TLS Leica C10 for strata building survey was determined in term of its accuracy and comparing with Zeb-Revo Handheld Mobile Laser Scanning (MLS) and the distometer. The accuracy for scanned data from both, TLS and MLS were compared with the Distometer by using root mean square error (RMSE) formula. Then, the 3D model of the building for both data, TLS and MLS were produced to analyze the visualization for different type of scanners. The software used; Autodesk Recap, Autodesk Revit, Leica Cyclone Software, Autocad Software and Geo Slam Software. The RMSE for TLS technique is 0.001m meanwhile, RMSE for MLS technique is 0.007<span class="thinspace"></span>m. The difference between these two techniques is 0.006<span class="thinspace"></span>m. The 3D model of building for both models did not have too much different but the scanned data from TLS is much easier to process and generate the 3D model compared to scanned data from MLS. It is because the scanned data from TLS comes with an image, while none from MLS scanned data. There are limitations of TLS for strata building survey such as water and glass window but this study proved that acquiring data by TLS is better than using MLS.</p>


2021 ◽  
Vol 310 ◽  
pp. 05002
Author(s):  
Yousef Naanouh ◽  
Vasyutinskaya Stanislava

Three-dimensional digital technology is important in the maintenance and monitoring of archeological sites. This paper focuses on using a combination of terrestrial laser scanning and unmanned aerial vehicle (Phantom 4 pro) photogrammetry to establish a three-dimensional model and associated digital documentation of Beaufort castle (Arnoun, South Lebanon). The overall discrepancy between the two technologies was sufficient for the generation of convergent data. Thus, the terrestrial laser scanning and phantom 4 photogrammetry data were aligned and merged post-conversion into compatible extensions. A three-D dimensional (3D) model, with planar and perpendicular geometries, based on the hybrid datapoint cloud was developed. This study demonstrates the potential of using the integration of terrestrial laser scanning and photogrammetry in 3D digital documentation and spatial analysis of the Lebanese archeological sites.


Author(s):  
C. K. A. F. Che Ku Abdullah ◽  
N. Z. S. Baharuddin ◽  
M. F. M. Ariff ◽  
Z. Majid ◽  
C. L. Lau ◽  
...  

Laser Scanner technology become an option in the process of collecting data nowadays. It is composed of Airborne Laser Scanner (ALS) and Terrestrial Laser Scanner (TLS). ALS like Phoenix AL3-32 can provide accurate information from the viewpoint of rooftop while TLS as Leica C10 can provide complete data for building facade. However if both are integrated, it is able to produce more accurate data. The focus of this study is to integrate both types of data acquisition of ALS and TLS and determine the accuracy of the data obtained. The final results acquired will be used to generate models of three-dimensional (3D) buildings. The scope of this study is focusing on data acquisition of UTM Eco-home through laser scanning methods such as ALS which scanning on the roof and the TLS which scanning on building façade. Both device is used to ensure that no part of the building that are not scanned. In data integration process, both are registered by the selected points among the manmade features which are clearly visible in Cyclone 7.3 software. The accuracy of integrated data is determined based on the accuracy assessment which is carried out using man-made registration methods. The result of integration process can achieve below 0.04m. This integrated data then are used to generate a 3D model of UTM Eco-home building using SketchUp software. In conclusion, the combination of the data acquisition integration between ALS and TLS would produce the accurate integrated data and able to use for generate a 3D model of UTM eco-home. For visualization purposes, the 3D building model which generated is prepared in Level of Detail 3 (LOD3) which recommended by City Geographic Mark-Up Language (CityGML).


2022 ◽  
pp. 4195-4207
Author(s):  
Marwa Mohamed ◽  
Zahra Ezz El Din ◽  
Laila Qais

    A three-dimensional (3D) model extraction represents the best way to reflect the reality in all details. This explains the trends and tendency of many scientific disciplines towards making measurements, calculations and monitoring in various fields using such model. Although there are many ways to produce the 3D model like as images, integration techniques, and laser scanning, however, the quality of their products is not the same in terms of accuracy and detail. This article aims to assess the 3D point clouds model accuracy results from close range images and laser scan data based on Agi soft photoscan and cloud compare software to determine the compatibility of both datasets for several applications. College of Science, Departments of Mathematics and Computer in the University of Baghdad campus were exploited to create the proposed 3D model as this area location, which is one of the distinctive features of the university, allows making measurements freely from all sides. Results of this study supported by statistical analysis including 2 sample T-test and RMSE calculation in addition to visual comparison. Through this research, we note that the laser3D model provides many points in a short time, so it will reduce the field work and also its data is faster in processing to produce a reliable model of the scanned area compared with data derived from photogrammetry, then the difference were computed for all the reference points.


Author(s):  
Jovana Radović

Within the last years terrestrial and airborne laser scanning has become a powerful technique for fast and efficient three-dimensional data acquisition of different kinds of objects. Airborne laser system (LiDAR) collects accurate georeferenced data of extremely large areas very quickly while the terrestrial laser scanner produces dense and geometrically accurate data. The combination of these two segments of laser scanning provides different areas of application. One of the applications is in the process of reconstruction of objects. Objects recorded with laser scanning technology and transferred into the final model represent the basis for building an object as it was original. In this paper, there will be shown two case studies based on usage of airborne and terrestrial laser scanning and processing of the data collected by them.


Author(s):  
P. Delis ◽  
M. Wojtkowska ◽  
P. Nerc ◽  
I. Ewiak ◽  
A. Lada

Textured three dimensional models are currently the one of the standard methods of representing the results of photogrammetric works. A realistic 3D model combines the geometrical relations between the structure’s elements with realistic textures of each of its elements. Data used to create 3D models of structures can be derived from many different sources. The most commonly used tool for documentation purposes, is a digital camera and nowadays terrestrial laser scanning (TLS). Integration of data acquired from different sources allows modelling and visualization of 3D models historical structures. Additional aspect of data integration is possibility of complementing of missing points for example in point clouds. The paper shows the possibility of integrating data from terrestrial laser scanning with digital imagery and an analysis of the accuracy of the presented methods. The paper describes results obtained from raw data consisting of a point cloud measured using terrestrial laser scanning acquired from a Leica ScanStation2 and digital imagery taken using a Kodak DCS Pro 14N camera. The studied structure is the ruins of the Ilza castle in Poland.


Author(s):  
D. Hoffmeister ◽  
S. Zellmann ◽  
K. Kindermann ◽  
A. Pastoors ◽  
U. Lang ◽  
...  

Terrestrial laser scanning was conducted to document and analyse sites of geoarchaeological interest in Jordan, Egypt and Spain. In those cases, the terrestrial laser scanner LMS-Z420i from Riegl was used in combination with an accurate RTK-GPS for georeferencing of the point clouds. Additionally, local surveying networks were integrated by established transformations and used for indirect registration purposes. All data were integrated in a workflow that involves different software and according results. The derived data were used for the documentation of the sites by accurate plans and cross-sections. Furthermore, the 3D data were analysed for geoarchaeological research problems, such as volumetric determinations, the ceiling thickness of a cave and lighting simulations based on path tracing. The method was reliable in harsh environmental conditions, but the weight of the instrument, the measuring time and the minimum measurement distance were a drawback. However, generally an accurate documentation of the sites was possible. Overall, the integration in a 3D GIS is easily possible by the accurate georeference of the derived data. In addition, local survey results are also implemented by the established transformations. Enhanced analyses based on the derived 3D data shows promising results.


Author(s):  
C. Hütt ◽  
H. Schiedung ◽  
N. Tilly ◽  
G. Bareth

In this study, images from the satellite system WorldView-2 in combination with terrestrial laser scanning (TLS) over a maize field in Germany are investigated. Simultaneously to the measurements a biomass field campaigns was carried out. From the point clouds of the terrestrial laser scanning campaigns crop surface models (CSM) from each scanning date were calculate to model plant growth over time. These results were resampled to match the spatial resolution of the WorldView-2 images, which had to orthorectified using a high resolution digital elevation model and atmosphere corrected using the ATCOR Software package. A high direct correlation of the NDVI calculated from the WorldView-2 sensor and the dry biomass was found in the beginning of June. At the same date, the heights from laser scanning can also explain a certain amount of the biomass variation (<i>r</i><sup>2</sup> = 0.6). By combining the NDVI from WorldView-2 and the height from the laser scanner with a linear model, the R2 reaches higher values of 0.86. To further understand the relationship between CSM derived crop heights and reflection indices, a comparison on a pixel basis was performed. Interestingly, the correlation of the NDVI and the crop height is rather low at the beginning of June (<i>r</i><sup>2</sup> = 0,4, <i>n</i> = 1857) and increases significantly (<i>R</i><sup>2</sup> = 0,79, <i>N</i> = 1857) at a later stage.


2017 ◽  
Vol 66 (2) ◽  
pp. 347-364
Author(s):  
Janina Zaczek-Peplinska ◽  
Maria Kowalska

Abstract The registered xyz coordinates in the form of a point cloud captured by terrestrial laser scanner and the intensity values (I) assigned to them make it possible to perform geometric and spectral analyses. Comparison of point clouds registered in different time periods requires conversion of the data to a common coordinate system and proper data selection is necessary. Factors like point distribution dependant on the distance between the scanner and the surveyed surface, angle of incidence, tasked scan’s density and intensity value have to be taken into consideration. A prerequisite for running a correct analysis of the obtained point clouds registered during periodic measurements using a laser scanner is the ability to determine the quality and accuracy of the analysed data. The article presents a concept of spectral data adjustment based on geometric analysis of a surface as well as examples of geometric analyses integrating geometric and physical data in one cloud of points: cloud point coordinates, recorded intensity values, and thermal images of an object. The experiments described here show multiple possibilities of usage of terrestrial laser scanning data and display the necessity of using multi-aspect and multi-source analyses in anthropogenic object monitoring. The article presents examples of multisource data analyses with regard to Intensity value correction due to the beam’s incidence angle. The measurements were performed using a Leica Nova MS50 scanning total station, Z+F Imager 5010 scanner and the integrated Z+F T-Cam thermal camera.


Sign in / Sign up

Export Citation Format

Share Document