Design and Kinematic Analysis of Two Novel 1-Translation and 2-Rotation Parallel Mechanism

2010 ◽  
Vol 33 ◽  
pp. 513-517
Author(s):  
Xiu Qin Huang ◽  
Hui Ping Shen ◽  
Xiu Mei Xin

The two novel 1-translation and 2-rotation parallel mechanisms are investigated. An analytic solutions corresponding to the forward and inverse position are obtained. The influences by the three input variables on the three output variables are analyzed carefully and the valid working ranges of input and output variables are given. The pros and cons are addressed by comparing with the two parallel mechanisms, and the optimal one of the two mechanisms is produced.The work of the paper provided a solid foundation for mechanical structural design and real-time controlling of the novel parallel mechanism.

2012 ◽  
Vol 220-223 ◽  
pp. 1740-1743
Author(s):  
Xiu Qin Huang ◽  
Hui Ping Shen ◽  
Xiu Mei Xin

A novel 1-translation and 2-rotation parallel manipulator is investigated. An analytic solutions corresponding to the forward and inverse position are obtained. The influences by the three input variables on the three output variables are analyzed carefully and the valid working ranges of input and output variables are given. The work of the paper provided a solid foundation for mechanical structural design and real-time controlling of the novel parallel mechanism by structural parameter discussion.


2011 ◽  
Vol 320 ◽  
pp. 228-231 ◽  
Author(s):  
Xiu Qin Huang ◽  
Hui Ping Shen ◽  
Xiu Mei Xin

A novel 3 degree of freedom(1-Translation and 2-Rotation) parallel mechanisms is investigated. The forward and inverse position of the mechanism are studied. The influences by the three input variables on the three output variables are analyzed carefully and the valid working ranges of input and output variables are given by discussing structural parameter. These provide a solid foundation for selecting structural designs and kinematics parameters accurately and for realizing the control and industrial application of the mechanism.


2019 ◽  
Vol 32 (1) ◽  
Author(s):  
Haitao Liu ◽  
Ke Xu ◽  
Huiping Shen ◽  
Xianlei Shan ◽  
Tingli Yang

Abstract Direct kinematics with analytic solutions is critical to the real-time control of parallel mechanisms. Therefore, the type synthesis of a mechanism having explicit form of forward kinematics has become a topic of interest. Based on this purpose, this paper deals with the type synthesis of 1T2R parallel mechanisms by investigating the topological structure coupling-reducing of the 3UPS&UP parallel mechanism. With the aid of the theory of mechanism topology, the analysis of the topological characteristics of the 3UPS&UP parallel mechanism is presented, which shows that there are highly coupled motions and constraints amongst the limbs of the mechanism. Three methods for structure coupling-reducing of the 3UPS&UP parallel mechanism are proposed, resulting in eight new types of 1T2R parallel mechanisms with one or zero coupling degree. One obtained parallel mechanism is taken as an example to demonstrate that a mechanism with zero coupling degree has an explicit form for forward kinematics. The process of type synthesis is in the order of permutation and combination; therefore, there are no omissions. This method is also applicable to other configurations, and novel topological structures having simple forward kinematics can be obtained from an original mechanism via this method.


2001 ◽  
Vol 13 (5) ◽  
pp. 488-496 ◽  
Author(s):  
Noriaki Ando ◽  
◽  
Masahiro Ohta ◽  
Kohei Gonda ◽  
Hideki Hashimoto

This paper describes the research results on telemicromanipulation systems for microlevel tasks. Because of its better manipulation precision, stiffness and speed characteristics, the parallel mechanism micromanipulator was chosen to compose our systems. First, the kinematic analysis of our original manipulator mechanism is performed. Then, the structure of our parallel manipulator, control scheme, and experimental results are shown. Position accuracy and device control characteristics are analyzed and the feasibility of the use of parallel mechanisms for micromanipulator is then discussed. A parallel manipulator motion is restricted by 3 factors: mechanical limits of the passive joints, collision between links and actuators limitations. Results of the numerical workspace analysis considering the above factors are shown. We are proposing the use of dual manipulators for implementing improved real manipulation systems. The first kinematics and workspace analysis of dual systems using the VR simulator are also shown.


2021 ◽  
Vol 11 (21) ◽  
pp. 9831
Author(s):  
Zhumadil Baigunchekov ◽  
Med Amine Laribi ◽  
Giuseppe Carbone ◽  
Azamat Mustafa ◽  
Bekzat Amanov ◽  
...  

This paper addresses the structural-parametric synthesis and kinematic analysis of the RoboMech class of parallel mechanisms (PM) having two sliders. The proposed methods allow the synthesis of a PM with its structure and geometric parameters of the links to obtain the given laws of motions of the input and output links (sliders). The paper outlines a possible application of the proposed approach to design a PM for a cold stamping technological line. The proposed PM is formed by connecting two sliders (input and output objects) using one passive and one negative closing kinematic chain (CKC). The passive CKC does not impose a geometric constraint on the movements of the sliders and the geometric parameters of its links are varied to satisfy the geometric constraint of the negative CKC. The negative CKC imposes one geometric constraint on the movements of the sliders and its geometric parameters are determined on the basis of the Chebyshev and least-square approximations. Problems of positions and analogues of velocities and accelerations of the considered PM are solved to demonstrate the feasibility and effectiveness of the proposed formulations and case of study.


2018 ◽  
Vol 10 (8) ◽  
pp. 168781401879702 ◽  
Author(s):  
Shuang Zhang ◽  
Jingfang Liu ◽  
Huafeng Ding

A novel type synthesis method for a class of spatial multi-loop coupled mechanisms with translational degrees of freedom is proposed in the paper. The novel class of spatial multi-loop coupled mechanisms has a stable topology layout which consists of three branches and three coupled chains. The basic idea of the new structural synthesis method lies at replacing the inputs of one mechanism by the outputs of another, thereby combining several mechanisms, where the topology split method for the topological layout and corresponding degree of freedom splitting principle are provided. The synthesis of the target mechanism is transformed into synthesis of corresponding serial and parallel mechanisms thereby, and a class of spatial multi-loop coupled mechanisms is synthesized. To validate the new synthesis method and to present a theoretical basis for future application, kinematic analysis of a single translational mobility (1T) spatial multi-loop coupled mechanism and a symmetrical two translational degrees of freedom (2T) spatial multi-loop coupled mechanism is performed. This article enriches the family of the spatial mechanisms for further instructing the study of spatial multi-loop coupled mechanisms.


2018 ◽  
Vol 94 (2) ◽  
pp. 303-325 ◽  
Author(s):  
Shivesh Kumar ◽  
Bertold Bongardt ◽  
Marc Simnofske ◽  
Frank Kirchner

2008 ◽  
Vol 130 (12) ◽  
Author(s):  
Jody A. Saglia ◽  
Jian S. Dai ◽  
Darwin G. Caldwell

This paper investigates the behavior of a type of parallel mechanisms with a central strut. The mechanism is of lower mobility, redundantly actuated, and used for sprained ankle rehabilitation. Singularity and dexterity are investigated for this type of parallel mechanisms based on the Jacobian matrix in terms of rank deficiency and condition number, throughout the workspace. The nonredundant cases with three and two limbs are compared with the redundantly actuated case with three limbs. The analysis demonstrates the advantage of introducing the actuation redundancy to eliminate singularities and to improve dexterity and justifies the choice of the presented mechanism for ankle rehabilitation.


2021 ◽  
pp. 1-23
Author(s):  
Ganmin Zhu ◽  
Shimin Wei ◽  
Ying Zhang ◽  
Qizheng Liao

Abstract This paper demonstrates a novel geometric modeling and computational method of the family of spatial parallel mechanisms with 3-R(P)S structure for direct kinematic analysis based on the point pair relationship. The point pair relationship, which is derived from the framework of conformal geometric algebra (CGA), consists of the relationship between the point and the point pair and two point pairs. The first research is on the distance relationship between the point and the point pair. Secondly, the derivation of the distance relationship between two point pairs is based on the aforementioned result, which shows the mathematical homogeneity. Thirdly, two formulations for a point of the point pairs that satisfy the distance relationship between two point pairs are reduced. Fourthly, the point pair relationship is applied to solve the direct kinematic analysis of the spatial parallel mechanism with 3-R(P)S structure. Finally, four numerical examples are provided to verify the validity of the proposed algorithm. Overall, the proposed method can be generalized for the direct kinematics of a series of spatial parallel mechanisms with 3-R(P)S structure.


Sign in / Sign up

Export Citation Format

Share Document