Next Generation Wireless Multiple Access Technology OFDMA and SC - FDMA Performance Analysis

2013 ◽  
Vol 336-338 ◽  
pp. 1670-1675
Author(s):  
Lin Wan

orthogonal frequency division multiple access (OFDMA) and single carrier frequency division multiple access (SC - FDMA) are the two kinds of 4 g wireless multiple access scheme. In the long term evolution (LTE) downlink link access scheme based on OFDMA, at the same time, the uplink access scheme based on SC - FDMA. In this article, we deduced the OFDMA and SC - FDMA basic performance difference, and then demonstrates the comprehensive performance comparisons between them. Theoretical derivation results show that the system capacity is better than that of SC - FDMA OFDMA. Then, we use the numerical simulation results confirm the conclusion. Keywords: OFDMA SC - FDMA basic capacity of the uplink transmission

2017 ◽  
Vol 8 (2) ◽  
pp. 113-116 ◽  
Author(s):  
M. Al-Rawi

The main challenge in any high-speed digital communication system is how to maximize the data rate with minimizing the bit error rate. Several techniques have been developed to achieve this point. Some of these techniques are orthogonal frequency division multiplexing (OFDM), single-carrier frequency domain equalization (SC-FDE), orthogonal frequency division multiple access (OFDMA), and single-carrier frequency division multiple access (SC-FDMA). These four techniques are described briefly in this paper. Also, the paper measures the performances of OFDMA and SC-FDMA systems over international telecommunication union (ITU) vehicular-A channel using minimum mean square error (MMSE) equalization. Simulation results show that the performances with interleaved mapping outperform that with localized mapping. Also, the performances with quadrature phase shift keying (QPSK) are better than that with 16-ary quadrature amplitude modulation (16QAM). In addition, the performance of SC-FDMA is better than that of OFDMA, when QPSK is used, but the latter is little bit better than that of SC-FDMA when 16QAM is used.


2016 ◽  
Vol 78 (8) ◽  
Author(s):  
Mohamed Melood A. Abdased ◽  
Mahamod Ismail ◽  
Rosdiadee Nordin

Long Term Evolution-Advanced (LTE-A) uses Single-Carrier Frequency Division Multiple Accesses (SC-FDMA) for uplink, because it has robust performance against the Peak Average Power Ratio (PAPR), compared to Orthogonal Frequency Division Multiple Access (OFDMA). SC-FDMA schemes include Interleaved FDMA (IFDMA) and Localized FDMA (LFDMA), both of which are commonly practiced in LTE-A uplink. IFDMA allocates distributed frequency carriers for users, whereas LFDMA allocates localized frequency carriers for users. The frequency allocation in an IFDMA scheme exhibits better PAPR performance, whereas the advantage of LFDMA is its lower complexity requirements. In this paper, a new scheme is introduced that integrates IFDMA and LFDMA by using a variable interleave allocation of subcarriers in the bandwidth. Here, Generalized Interleaved Frequency Division Multiple Accesses (GIFDMA), is used as a master key that controls the allocation for interleaved and localized FDMA, also known as L/I FDMA. This integration of IFDMA and LFDMA has been derived theoretically and empirically. Simulations are conducted to investigate the effect of different parameters on the GIFDMA PAPR performance, which is compared to that of conventional IFDMA and LFDMA. The simulation results revealed that the proposed GIFDMA provides PAPR performance comparable to that of both LFDMA and IFDMA.


2021 ◽  
pp. 386-426
Author(s):  
Stevan Berber

Chapter 8 presents modern multi-user and multicarrier communication systems based on code division multiple access technology and orthogonal frequency division multiple access technology. Analogue, digital, and discrete orthogonal frequency division multiple access systems are presented separately and then inter-related from theoretical and practical points of view. A precise mathematical model of discrete baseband and intermediate-frequency blocks is presented, including procedures for signal mapping and the discrete Fourier transform, and then related to the model of an analogue radiofrequency block to make the whole orthogonal frequency division multiple access system. The basic theory of binary and non-binary code division multiple access systems operation is presented. To support deeper theoretical understanding of the design and operation of a code division multiple access system, one project in the supplementary material demonstrates the mathematical modelling, simulation, and design of this system in field-programmable gate array technology and presents the development tools required.


2019 ◽  
Vol 16 (12) ◽  
pp. 5026-5031
Author(s):  
Kethavath Narender ◽  
C. Puttamadappa

Symmetrical Frequency Division Multiple Access (OFDMA) is utilized in the higher rate Wireless Communication Systems (WCSs). In the correspondence framework, a fem to cell is a little cell in building Base Station (BS), which devours less power, short range, and works in a minimal effort. The fem to cell has little separation among sender and recipient that give higher flag quality. In spite of the favorable position in fem to cell systems, there win critical difficulties in Interference Management. Specifically, impedance between the macro cell and fem to cell turns into the fundamental issue in OFDMA-Long Term Evaluation (OFDMA-LTE) framework. In this paper, the Neural Network and Hybrid Bee Colony and Cuckoo Search based Resource Allocation (NN-HBCCS-RA) in OFDMA-LTE framework is presented. The ideal power esteems are refreshed to dispense every one of the clients in the fem to cell and large scale cell. The NN-HBCCS strategy accomplished low Signal to Interference Noise Ratio (SINR), otherworldly proficiency and high throughput contrasted with customary techniques.


Sign in / Sign up

Export Citation Format

Share Document