The Hysteretic Property Study of Cross Steel Reinforced Concrete Special-Shaped Column in Different Axial Compression Ratios

2013 ◽  
Vol 351-352 ◽  
pp. 671-674
Author(s):  
Ya Feng Xu ◽  
Ri Liang Li ◽  
Shou Yan Bai

In this paper, the finite element analysis software ABAQUS is used to study the hysteretic property of cross steel reinforced concrete special-shaped column in different axial compression ratios. In the same condition, we can get the deformation diagram of cross steel reinforced concrete special-shaped column which the axial compressive ratio is 0.0, 0.4, 0.5, 0.6, 0.7 and 0.8 by changing the axial load of the column, then extract the hysteretic curve and skeleton curve. By contrast, it can be seen that the hysteretic property of column reduce with the increasing of axial compression ratio, and the ultimate bearing capacity of column also reduce with the increasing of axial compression ratio.

2013 ◽  
Vol 351-352 ◽  
pp. 679-682
Author(s):  
Ri Liang Li ◽  
Ya Feng Xu ◽  
Shou Yan Bai

In this paper, we study the effect of rate of steel bone for the hysteretic property of cross steel reinforced concrete special-shaped column in the same horizontal cyclic load when they have the same axial compression ratio. We use the finite element analysis software ABAQUS to get the deformation pattern by establishing models of column, choosing the constitutive relation reasonably and determining the type of unit. We apply the data of simulation to draw the hysteretic curve and the skeleton curve, and then we analyze the hysteretic property by using the curve and the data. By contrast, it can be seen that the hysteretic property of column enhance with the increasing of rate of steel bone, and the ultimate bearing capacity of column also enhance with the increasing of rate of steel bone.


2013 ◽  
Vol 351-352 ◽  
pp. 771-774
Author(s):  
Ri Liang Li ◽  
Ya Feng Xu ◽  
Shou Yan Bai

In order to study the hysteretic property of cross steel reinforced concrete special-shaped column, we use the finite element analysis software ABAQUS to build 6 models of cross steel reinforced concrete special-shaped column in vertical load and horizontal cyclic load. We observe the mechanical process and the failure pattern in different concrete strength and extract hysteretic curve and skeleton curve. By analyzing two curves we know the influence of concrete strength. Simulation results show that the hysteretic property of column is better with the increasing of concrete strength and the column also has higher bearing capacity.


2013 ◽  
Vol 351-352 ◽  
pp. 687-690
Author(s):  
Ya Feng Xu ◽  
Yue Wang ◽  
Shou Yan Bai

To study the mechanical properties of CFPR steel tube composite columns filled with steel reinforced concrete under different axis compression ratio by adopting 3 specimens of theirs quasistatic tests are carried out. The failure mechanism and test results are analyzed with member of the load-displacement hysteretic curves, skeleton curves. The results show that the axial compression ratio decreases conducive to the improvement of the bearing capacity of specimens. Axial compression ratio has a great influence on the skeleton curve and ductility. Axial compression ratio is higher, the descent stage of the skeleton curve is steeper, the ductility is better. With the increase of the axial compression ratio, the ductility coefficient and energy dissipation capacity is lower.


2011 ◽  
Vol 243-249 ◽  
pp. 15-19 ◽  
Author(s):  
Zhe Li ◽  
Shao Ji Chen ◽  
Jing Xu ◽  
Ye Ni Wang ◽  
Cui Ping Zhang

Compared with reinforced concrete shaped columns, bearing capacity and ductility of steel reinforced concrete shaped columns are significantly improved, so it is with theoretical significance and practical application of value to research. Based on the plain cross section presume, with material cross-section boundary calculation unit, 15 steel reinforced concrete cross-shaped columns(SRCCSC) have made nonlinear full-rang numerical analysis. It demonstrates that the most adverse curvature ductility load angle of SRCCRSC is 45°.Loading angle (), axial compression ratio (n), and the ratio of spacing and diameter of longitudinal reinforcements (s/d) are the principal factors in curvature ductility of SRCCSC subjected to biaxial eccentric compression. Under the most unfavorable loading angle, through a regression analysis of curvature ductility computer data of 150 cross-shaped columns with 8mm stirrups diameter and 150 columns with 10mm stirrups diameter, it can be obtained with the relationship betweenand axial compression ration,s/d, of SRCCSC subjected to biaxial eccentric compression.


2012 ◽  
Vol 166-169 ◽  
pp. 318-321
Author(s):  
Ya Feng Xu ◽  
Xu Yang ◽  
Xin Wang ◽  
Shou Yan Bai

The article analysis the seismic behaviors of circular steel tube composite column filled with steel reinforced concrete by the large finite element analysis software ABAQUS, adopted the load-displacement method and aimed at studying the mechanical properties of circular steel tube composite columns filled with steel reinforced concrete under horizontal low-cyclic loading, considering the degree of ductility, capacity of energy dissipation by the steel ratio and axial compression ratio. Under different axial compression ratios and steel ratios, the hysteresis curves and skeleton curves are carried out. Along with the increase of steel ratio, the deformation ability and ultimate bearing capacity are raised, but with the increase of axial compression ratio, the deformation ability becomes worse.


2014 ◽  
Vol 501-504 ◽  
pp. 685-689
Author(s):  
Liang Li Xiao ◽  
Xiao Yu ◽  
Jian Wei Han

According to the limit values of axial compression ratio of steel reinforced concrete given by technical specification for steel reinforced concrete composite structure (JGJ138-2001), the axial force of steel reinforced concrete sandwich nodes calculated by MIDAS and the axial bearing capacity calculated by limit values of axial compression ratio are compared with an actual project. The results show that steel concrete columns with designed strength of C60, the strength more than of column concrete strength higher than C50 is the least requirement as to meet the axial compression ratio. The result provides a theoretical basis for the future of safety work and the sandwich joint construction.


2013 ◽  
Vol 275-277 ◽  
pp. 1276-1280
Author(s):  
Yun Lin Liu ◽  
Wan Yun Yin ◽  
Ru Ling ◽  
Ke Wei Ding ◽  
Ren Cai Jin ◽  
...  

To reduce the construction cost of the domestic promotion of the new prefabricated concrete shear wall structure system which is promoted in our country. To analyze the factors which can affect the load-carrying capacity and seismic performance of shear wall, including the axial compression ratio, the concrete strength, the reinforcement ratio and some other factors. Among all these factors, the axial compression ratio is the main factor influencing the seismic performance and the section ductility [1]. This paper adopts the ANSYS finite element analysis program, operating a nonlinear analysis on the performance of the precast shear wall when it is with one-way loading, studying the axial compression ratio's effect on the bearing capacity and deformability of the precast shear wall. According to the finite element analysis, when the axial compression ratio is between 0.2 to 0.4 and as it rises, the specimen's bearing capacity and stiffness will increases while deformability and ductility will decrease. Through the finite element analysis, we can provide reliable theory basis for the performance of the precast shear wall when it is with one-way loading.


2011 ◽  
Vol 71-78 ◽  
pp. 3855-3860
Author(s):  
Xiao Liu ◽  
Min Li

In order to study the bearing capacity and section stress-strain distribute on the steel tube filled with steel-reinforced concrete (STSRC) compression-flexure column, four compression-flexure members of STSRC were tested and theoretical researched. The major parameters of the test were axial compression ratio (n=0.5~0.85). The result of the study showed that: load-deformation() typical curve includes three stages, elastic characteristic, elastic-plastic characteristic, and disruption; Along with the increase of axial compression ratio, the bearing capacity and ductility reduced, but the peak displacement had not change enough; The composite column conformed to plane section, and the larger the axial compression ratio, the further distance of neutral axis of section to the centric axis and closer to the tensile region. ; During the loading process, the steel skeleton in compressive zone yield, but in tensile region never yielded. According to the test results and the limit equilibrium method, the formula for calculating the compression-flexure member of STSRC was established. A good agreement between the calculation results and testing results illustrates, which is feasible to using the calculating formula to calculate the bearing capacity of STSRC.


2013 ◽  
Vol 438-439 ◽  
pp. 526-529
Author(s):  
Ri Liang Li ◽  
Ya Feng Xu ◽  
Shou Yan Bai

This paper uses the large-scale finite element analysis software ABAQUS to simulate 12 cross steel reinforced concrete special-shaped columns with the control variables of axial compression ratio and rate of steel bone, and subjected to the monotonic load with 20mm horizontal displacement. 6 columns work under the different axial compression ratio of 0.0, 0.4, 0.5, 0.6, 0.7 and 0.8. Other 6 columns are made of different rates of steel bone with different steel bone thickness of 0mm, 2mm, 4mm and 6mm, 8mm and 10mm, and subject to vertical axial force in axial compression ratio of 0.3. By simulating, we obtain the load - displacement curve of different axial compression ratios and different rates of steel bone, and analyze the effect of the bearing capacity of the cross steel reinforced concrete special-shaped columns in different parameters. The results show that the bearing capacities of the columns decrease with the increasing ratio of axial compression, and increase with the increasing rate of steel bone.


Sign in / Sign up

Export Citation Format

Share Document