Research on Seismic Response Estimation of Reinforced Concrete Pier under Pulse-Type Near-Fault Ground Motion

2013 ◽  
Vol 353-356 ◽  
pp. 1867-1870
Author(s):  
Yan Li Shen ◽  
Xiu Li Du ◽  
Qing Shan Yang

For estimating seismic response of pier-structure under near-fault ground motion, The typical pulse-type near-fault ground motion records were chosen to establish a record base, and three pier models with different natural period were established; The non-elastic response spectral displacement of ground motion was used to estimate the nonlinear response; The yield displacement of the nonlinear oscillator was defined based on the static pushover analysis result, and its influence on response estimation was studied. The study result is important for structural seismic response estimation by using the non-elastic response spectral displacement and the probability-based seismic performance evaluation.

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Chunyang Liu ◽  
Peng Sun ◽  
Ruofan Shi

This paper proposes two kinds of arrangements of buckling-restrained brace dampers to strengthen soft-first-storey structures locally. Two types of near-fault ground motion, with and without pulse, were selected for a study of the seismic response characteristics of soft-first-storey structures with and without buckling-restrained brace dampers, and the effects of different bracing arrangements on improving the seismic performance of soft-first-storey structures were recognized. The results show that, compared with pulse-free ground motion, near-fault pulsed ground motion results in a more severe seismic response in soft-first-storey frame structures, leading to more serious and rapid destruction of the main structure. Buckling-restrained brace dampers have an obvious energy dissipation effect, play a better role in protecting the main structure, and have good practicality. Compared with structures in which the buckling-restrained brace dampers are arranged only on the bottommost layer, the bottom-four-layer-support structure is more advantageous in terms of seismic performance.


2020 ◽  
Vol 36 (3) ◽  
pp. 1485-1516
Author(s):  
Jui-Liang Lin ◽  
Wen-Hui Chen ◽  
Fu-Pei Hsiao ◽  
Yuan-Tao Weng ◽  
Wen-Cheng Shen ◽  
...  

A shaking table test of a three-story reinforced concrete (RC) building was conducted. The tested building is vertically irregular because of the first story’s elevated height and the third story’s added RC walls. In addition to far-field ground motions, near-fault ground motions were exerted on this building. A numerical model of the three-story building was constructed. Comparing with the test results indicates that the numerical model is satisfactory for simulating the seismic response of the three-story building. This validated numerical model was then further applied to look into two issues: the effective section rigidities of RC members and the effects of near-fault ground motions. The study results show the magnitude of the possible discrepancy between the actual seismic response and the estimated seismic response, when the effective section rigidities of the RC members are treated as in common practice. An incremental dynamic analysis of the three-story RC building subjected to one far-field and one near-fault ground motion, denoted as CHY047 and TCU052, respectively, was conducted. In comparison with the far-field ground motion, the near-fault ground motion is more destructive to this building. In addition, the effect of the selected near-fault ground motion (i.e. TCU052) on the building’s collapse is clearly identified.


2020 ◽  
Vol 18 (14) ◽  
pp. 6375-6403
Author(s):  
Chao Zhang ◽  
Jian-bing Lu ◽  
Hong-yu Jia ◽  
Zhi-chao Lai ◽  
Xu Li ◽  
...  

2012 ◽  
Vol 594-597 ◽  
pp. 1688-1691
Author(s):  
Ming Li ◽  
Qiao Jin ◽  
Yong Liu ◽  
He Yuan ◽  
Zhe Zhe Sun

during the process of fitting or synthesizing near-fault ground motion,parameters of the equivalent velocity pulse need to be decided based on seismic records.Thus, it is a key problem that how to identify these parameters from the records.Pulse period and pulse peak velocity are important parameters in the equivalent velocity pulse models.In this study,various methods on identifying these parameters are reviewed.It is shown that all the existing methods have limitations,especially for the irregular seismic records.Finally,problems need to be further studied is pointed out.


2021 ◽  
Author(s):  
Yafei Zhai ◽  
Liaojun Zhang ◽  
Hanyun Zhang ◽  
Tianxiao Ma ◽  
Binghui Cui

Abstract Strong earthquake cases of concrete gravity dams show that the foundation damage has an important influence on the seismic response and damage characteristics of the dam body. Compared with non-pulse ground motions, pulse-like near-fault ground motions have a wider response spectrum sensitive zone, which will cause more modes of the structure to respond, resulting in more serious damage to the structure. In order to study the real dynamic damage characteristics of concrete gravity dams under the action of near-fault ground motions, this paper takes Koyna gravity dam as the object and establishes a multi-coupling simulation model that can reasonably reflect the dynamic damage evolution process of dam concrete and foundation rock mass. A total of 12 near-fault ground motion records with three types of rupture directivity pulse, fling-step pulse and non-pulse are selected, deep research on the overall damage evolution law of concrete gravity dams. Considering the additional influence of different earthquake mechanisms, different site types and other factors on the study, the selected ground motion records are from the same seismic events (Chi-Chi), the same direction but different stations. The results show that the foundation of the concretes gravity dam often get damaged before the dam body under the action of strong earthquakes. Compared with the near-fault non-pulse ground motion, the structural damage of the gravity dam under the action of the near-fault directivity pulse ground motion is significantly increased, and causes greater damage and displacement response to the dam body. The near-fault fling-step pulse ground motion has the least impact on the dynamic response of the gravity dam structure.


2020 ◽  
Vol 3 (2) ◽  
pp. 841-849
Author(s):  
Esengul Cavdar ◽  
Gokhan Ozdemir ◽  
Ozkan Kale

Ground motions recorded at near fault zones ensures rich low frequency contents, and high velocity pulse signals which may result in large shear force and displacement demands in structural elements. During the recording of these seismic events by accelerometers, low-frequency noise may sometimes accompany the signal. Thus, extracting this noise from recorded acceleration data is a crucial step of post-processing performed prior to use of acceleration time series in structural analyses for both design or assessment purpose. The objective of this study is to assess the effect of high-pass filtering on the intensity measures of ground motions. A set of near fault ground motions that comprises both pulse-like and non-pulse like characteristics were selected and they were subjected to filtering for various cutting frequency contents. As a function of filtering, variation in several intensity measures of filtered ground motions namely, PGD, PGV, PGA, PGV/PGA and significant duration were analyzed. It is revealed that changing the cutting frequency of high pass filtering considerably changes the intensity measures of ground motion records.


Sign in / Sign up

Export Citation Format

Share Document