Electrical Properties of Bi(In,Ga,Sc)O3-PbTiO3 Piezoelectric Ceramics

2013 ◽  
Vol 364 ◽  
pp. 794-798 ◽  
Author(s):  
Yi Chen ◽  
Jian Guo Zhu ◽  
Ding Quan Xiao

The gallium and indium double-modified bismuth scandate-lead titanate (1-x)Bi (In0.20Ga0.05Sc0.75)O3-xPbTiO3((1-x)BIGS-xPT,x=0.55-0.70) ceramics were prepared by using conventional ceramic technique. (1-x)BIGS-xPT ceramics for nearx=0.60 exhibits an evident enhancement in room temperature dielectric and piezoelectric properties, with dielectric constantε, piezoelectric constantd33, planar electromechanical coupling coefficientkpand Curie temperatureTCof 1100, 295 pC/N, 0.43 and 435 °C, respectively. TheTCof (1-x)BIGS-xPT is in the range of 425-530 °C for the compositions investigated. The combination of highTCand excellent piezoelectric activity suggest that the (1-x)BIGS-xPT ceramics are usable candidate materials for high temperature piezoelectric devices applications.

2014 ◽  
Vol 1061-1062 ◽  
pp. 83-86
Author(s):  
Hong Wu ◽  
De Yi Zheng

In this paper, the effects of different sintering temperature on the microstructure and piezoelectric properties of Pb(Nb2/3Zn1/3)0.03(Zr52Ti48)0.97O3(PNZZT) ceramic samples were investigated. The Pb(Nb2/3Zn1/3)0.03(Zr52Ti48)0.97O3 ceramics materials was prepared by a conventional mixed oxide method. In the period of the experiment, the relationship between crystallographic phase and microstructure were analyzed by X-ray diffraction(XRD) and scanning electron microscopy(SEM) respectively. The XRD patterns shows that all of the ceramic samples are with a tetragonal perovskite structure. Along with sintering temperature increased and the x is 0.03, the grain size gradually become big. Through this experiment, it has been found that when the x is 0.03 and sintered at 1130°C for 2 h, the grains grow well, the grain-boundary intersection of the sample combined well and the porosity of the ceramics decreased, an excellent comprehensive electrical properties of the Pb(Nb2/3Zn1/3)0.03(Zr52Ti48)0.97O3 samples can be obtained. Its best electrical properties are as follows: dielectric constant (ε) is 1105, dielectric loss(tg) is 0.017, electromechanical coupling coefficient (Kp) is 0.287, piezoelectric constant(d33) is 150PC/N


2013 ◽  
Vol 368-370 ◽  
pp. 760-763
Author(s):  
Chun Huy Wang ◽  
Ming Qiu Wei

(Na0.5K0.5)NbO3 with Bi0.5(Na0.97K0.03)0.5TiO3 with x≤0.05 has been prepared by the conventional mixed oxide process. X-ray diffraction analysis revealed that, during sintering, all the Bi(Na0.97K0.03)TiO3 diffuses into the lattice of (Na0.5K0.5)NbO3 to form a solid solution with a perovskite structure. A morphotropic phase boundary (MPB) between orthorhombic (O) and rhombohedral (R) was found at the composition 0.98(Na0.5K0.5)NbO3-0.02Bi0.5(Na0.97K0.03)0.5TiO3 [abbreviated as 0.98NKN-0.02BNKT] with correspondingly enhanced dielectric and piezoelectric properties. For 0.98NKN-0.02BNKT ceramics, the electromechanical coupling coefficients of the planar mode kp and the thickness mode kt reach 0.33 and 0.49, respectively, after sintering at 1100 oC for 3 h. The ratio of the thickness coupling coefficient to the planar coupling coefficient is 1.48. With suitable Bi0.5(Na0.97K0.03)0.5TiO3 concentration, a dense microstructure and good electrical properties are obtained.


2010 ◽  
Vol 663-665 ◽  
pp. 1310-1313 ◽  
Author(s):  
Yue Ming Li ◽  
Liang Jiang ◽  
Zhong Yang Shen ◽  
Run Hua Liao ◽  
Zhu Mei Wang

Lead-free (1-x)K0.49Na0.51NbO3-xLiTaO3 (x=0.00-0.07) piezoceramics were fabricated by the conventional solid-state sintering method, the effects of LiTaO3 content on the phase structure and piezoelectric properties of the ceramics were investigated. All the ceramics show single perovskite structure with a phase transition from an orthorhombic symmetry to a tetragonal one across an orthorhombic-tetragonal coexistence region with 0.04<x<0.06. For the ceramic sample with x=0.05, due to the coexistence of orthorhombic and tetragonal phases near room temperature, enhanced piezoelectric constant d33=236 pC/N and planar electromechanical coupling coefficient kp=40.9% are observed. In addition to other good electrical properties such as εr=969, tgδ=0.015 and Qm=41, this ceramic is a promising lead-free piezoelectric material.


2020 ◽  
Vol 15 (4) ◽  
pp. 459-462
Author(s):  
Jae-Hoon Ji ◽  
Don-Jin Shin ◽  
Sang-Kwon Lee ◽  
Sang-Mo Koo ◽  
Jae-Geun Ha ◽  
...  

In this research, substitution effects of BiAlO3 with (Bi, Na)TiO3 piezoelectric ceramics was investigated for the sensors and actuators applications. (Bi,Na)TiO3 material has been employed for the piezoelectric devices applications because of their high piezoelectric charge constant, d33, of 88 pC/N, electromechanical coupling coefficient, kp, of 22% and inverse piezoelectric charge constant of 498 pm/V. As a piezoelectric material, (Bi, Na)TiO3 has perovskite structure with tetragonal basis. The improvement of piezoelectric and inverse piezoelectric properties is important for industrial device applications. Therefore, in this research, we have tried to increase functional and electrical properties of (Bi, Na)TiO3 piezoelectric materials by substituting BiAlO3 dopants. As a result, the piezoelectric constant was increased up to 140 pC/N, and the densification was increased up to 5.92 g/cm3 .


2010 ◽  
Vol 445 ◽  
pp. 55-58 ◽  
Author(s):  
Rintaro Aoyagi ◽  
Makoto Iwata ◽  
Masaki Maeda

(Na1-xBax)(Nb1-xTix)O3 (NNBTx; x=0.0-0.21) solid-solution ceramics were synthesized and their crystal structure, dielectric properties and piezoelectric properties were investigated. The crystal structure at room temperature of NNBTx varied from orthorhombic to tetragonal with increasing BaTiO3 content x. The phase boundary between orthorhombic and tetragonal at room temperature was confirmed BT content between x=0.08 and 0.09. For x>0.05, it was found that the Curie temperature was decreased with increasing x. The highest electromechanical coupling factor, kp, and the largest piezoelectric constant, d33, were obtained at x=0.09-0.10.


2013 ◽  
Vol 423-426 ◽  
pp. 459-462
Author(s):  
Hai Tao Li ◽  
Xiao Bo Hong ◽  
Hong Qiong Huang ◽  
Jin Feng Gong ◽  
Zhi Yuan Cheng ◽  
...  

Alkali niobate lead-free piezoelectric ceramics with nominal compositions [(Na0.52K0.48)0.94+ xLi0.06-x](Nb0.94Sb0.06)O3 ((NK)xLNS) were prepared by normal sintering. Crystalline phase, piezoelectric properties and sintering behavior of (NK)xLNS ceramics were investigated with a special emphasis on the influence of alkli metal content. The x-ray diffraction patterns and the corresponding calculation of lattice parameters indicated that a phase transition from tetragonal to orthorhombic symmetry occurs as x=0.01, resulting in enhanced piezoelectric constant and planar electromechanical coupling coefficient of 266 pC/N and 38.5%, respectively. With x=0.01, the ceramics sintered at 1050 C show higher density and better electrical properties. Our results indicate the importance of sintering temperature and elaborate compositional control for enhancing piezoelectric properties in niobate-based ceramics.


2011 ◽  
Vol 211-212 ◽  
pp. 152-155
Author(s):  
Chun Huy Wang

Extending the investigations on (Na0.5K0.5)NbO3-based solid solution for lead-free piezoelectric ceramics, this paper consider the complex solid-solution system (Na0.5K0.5)NbO3–Bi0.5(Na0.85K0.15)0.5TiO3[NKN-BNKT]. (Na0.5K0.5)NbO3with 2 ~ 6 mol% Bi0.5(Na0.85K0.15)0.5TiO3has been prepared following the conventional mixed oxide process. A morphotropic phase boundary (MPB) between orthorhombic (O) and hexagonal (H) was found at the composition 0.96NKN-0.04BNKT with correspondingly enhanced dielectric and piezoelectric properties. The electromechanical coupling factor and dielectric constant are higher for compositions near the MPB. The dielectric constant (KT33), planar coupling coefficient (kp) and thickness coupling coefficient (kt)of 0.96NKN-0.04BNKT ceramics were 1273, 34% and 38%, respectively.


2014 ◽  
Vol 1058 ◽  
pp. 190-195
Author(s):  
Na Yin ◽  
Abolfazl Jalalian ◽  
Zhi Gang Gai ◽  
Lan Ling Zhao ◽  
Xiao Lin Wang

Doping effect on the lattice parameters, vibration modes, dielectric and piezoelectric properties of LiSbO3, LiTaO3 and LiNbO3 substituted lead-free K0.5Na0.5NbO3 (KNN) ceramics are investigated. All compositions are crystallized in morphotropic phase boundary region. Enhanced piezoelectric and electromechanical response d33 ~176–197 pC/N, kp ~45%–48%, and kt~34%–47% obtained in the doped ceramics are due to the presence of the polymorphic phase transition between orthorhombic and tetragonal phase at room temperature.


2013 ◽  
Vol 566 ◽  
pp. 76-80 ◽  
Author(s):  
Kenta Yamashita ◽  
Shigehito Shimizu ◽  
Nobuhiro Kumada ◽  
Kouichi Nakashima ◽  
Ichiro Fujii ◽  
...  

Barium titanate (BaTiO3, BT) - potassium niobate (KNbO3, KN) nanostructured ceramics with artificial morphotropic phase boundary (MPB) structure were successfully prepared at temperatures below 230 °C by solvothermal method. Various characterizations suggested that the BT-KN nanostructured ceramics exhibited a porosity of around 30 % and heteroepitaxial interface between BT and KN. Their dielectric and piezoelectric properties were measured at room temperature, and the dielectric constant and apparent piezoelectric constant estimated from slope of strain and electric field curve was 370 and 136 pm/V, respectively.


2011 ◽  
Vol 284-286 ◽  
pp. 1408-1411
Author(s):  
Yan Li ◽  
Yan Jie Zhang ◽  
Rui Qing Chu ◽  
Zhi Jun Xu ◽  
Qian Chen ◽  
...  

La2O3-doped lead-free 0.82Bi0.5Na0.5TiO3-0.18Bi0.5K0.5TiO3(abbreviated to 0.82BNT-0.18BKT) piezoelectric ceramics were synthesized by the conventional mixed-oxide method, and the effect of La2O3addition on the dielectric and piezoelectric properties was investigated. X-ray diffraction (XRD) patterns show that La2O3diffuses into the lattice of the 0.82BNT-0.18BKT ceramics to form a solid solution with a pure perovskite structure. SEM images indicate that the grain size of the 0.82BNT-0.18BKT ceramics increased with the addition of La2O3doping. The electrical properties of 0.82BNT-0.18BKT ceramics have been greatly improved by certain amount of La2O3substitutions. At room temperature, the 0.82BNT-0.18BKT ceramics doped with 0.25 wt. % La2O3exhibited the optimum properties with high piezoelectric constant (d33= 142 pC/N) and high planar coupling factor (kp= 0.23).


Sign in / Sign up

Export Citation Format

Share Document