Predictive Modeling of Minimum Quantity Lubrication: Cutting Force, Temperature and Residual Stress

2013 ◽  
Vol 365-366 ◽  
pp. 1181-1184 ◽  
Author(s):  
Xia Ji ◽  
Xue Ping Zhang ◽  
Bei Zhi Li ◽  
Steven Y. Liang

This paper presents an analytical approach to predict the machining force, temperature and residual stress under minimum quantity lubrication (MQL) condition. Both the lubrication and cooling effects are considered to change the tribological and thermal properties in the modified Oxleys model, which is capable to predict the cutting force and temperature in MQL machining directly from cutting conditions. The machining-induced residual stress is predicted by modified McDowell hybrid algorithm. The predicted cutting forces and residual stresses are verified by orthogonal cutting tests for C45 steel and TC4 alloy steel.

Author(s):  
Xia Ji ◽  
Steven Y Liang

This article presents a sensitivity analysis of residual stress based on the verified residual stress prediction model. The machining-induced residual stress is developed as a function of cutting parameters, tool geometry, material properties, and lubrication conditions. Based on the residual stress predictive model, the main effects of the cutting force, cutting temperature, and residual stress are quantitatively analyzed through the cosine amplitude method. The parametric study is carried out to investigate the effects of minimum quantity lubrication parameters, cutting parameters, and tool geometry on the cutting performances. Results manifest that the cutting force and residual stress are more sensitive to the heat transfer coefficient and the depth of cut, while the cutting temperature is more sensitive to the cutting speed. Large maximum compressive residual stress is obtained under a lower flow rate of minimum quantity lubrication, small depth of cut, and the proper air–oil mixture ratio. This research can support the controlling and optimization of residual stress in industrial engineering by strategically adjusting the application parameters of minimum quantity lubrication.


2016 ◽  
Vol 34 (1) ◽  
pp. 41-46 ◽  
Author(s):  
X. Ji ◽  
B.-Z. Li ◽  
Steven Y. Liang

AbstractA physics-based model of residual stress in minimum quantity lubrication (MQL) machining is presented. The stresses resulting from thermal and mechanical loading in the MQL machining process are coupled into an incremental thermal-elastic-plastic model for predicting the final resultant residual stress in the machined workpiece. Comparative analysis is made between the stresses produced by the thermal load and mechanical load in the machining process. Results manifest that for the surface of the machined workpiece, the stress produced by thermal load is on par with the contact stress produced by mechanical load in the magnitude. With the increase of depth into the workpiece, the stress produced by mechanical load is dominant of the total stresses. The rationale demonstrates that thermal load is prone to generate the tensile residual stress at the surface of the machined workpiece, while the mechanical load is prone to generate the compressive residual stress at the surface of the machined workpiece. Finally, the residual stress prediction model is verified by orthogonal cutting of AISI 4130 alloy steel.


Author(s):  
Xia Ji ◽  
Xueping Zhang ◽  
Steven Y. Liang

A new model to predict cutting force and temperature is developed by incorporating the lubrication and cooling effects generated from minimum quantity lubrication (MQL) machining. The boundary lubrication theory is utilized to estimate the friction behavior in prediction model. The model is capable of predicting cutting force and temperature in MQL machining directly from given cutting conditions, as well as material properties. Subsequently, the response of temperature distributions to chip formation and MQL is quantified on the basis of a moving heat source/loss model which iterates with the initial cutting force to achieve the final predictions. The predicted cutting temperature and cutting force are validated by the experimental data for AISI 9310 steel and AISI 1045 steel, respectively. Results show that under cutting speeds of 223–483 m/min, feed rates 0.10–0.18 mm/rev, depth of cut 1.0mm, the predicted cutting temperature at the tool-chip interface are generally lower than experimental measurements by 2% to 19%. And the model provides an average error of 11% for temperature prediction. With respect to cutting force prediction, the model provides a prediction error of 13% on the average in the cutting direction and 12% in the thrust direction within the experimental test condition range (cutting speeds of 45.75–137.25m/min, feeds 0.0508–0.1016 mm/rev, and depth of cut 0.508–1.016mm). In actual machining, the effects of possible tool wear causing higher temperature and force can contribute to deviations from model predictions involving only sharp tools.


2020 ◽  
Vol 902 ◽  
pp. 97-102
Author(s):  
Tran Trong Quyet ◽  
Pham Tuan Nghia ◽  
Nguyen Thanh Toan ◽  
Tran Duc Trong ◽  
Luong Hong Sam ◽  
...  

This paper presents a prediction of cutting temperature in turning process, using a continuous cutting model of Johnson-Cook (J-C). An method to predict the temperature distribution in orthogonal cutting is based on the constituent model of various material and the mechanics of their cutting process. In this method, the average temperature at the primary shear zone (PSZ) and the secondary shear zone (SSZ) were determined for various materials, based on a constitutive model and a chip-formation model using measurements of cutting force and chip thicknes. The J-C model constants were taken from Hopkinson pressure bar tests. Cutting conditions, cutting forces and chip thickness were used to predict shear stress. Experimental cutting heat results with the same cutting parameters using the minimum lubrication method (MQL) were recorded through the Testo-871 thermal camera. The thermal distribution results between the two methods has a difference in value, as well as distribution. From the difference, we have analyzed some of the causes, finding the effect of the minimum quantity lubrication parameters on the difference.


Sign in / Sign up

Export Citation Format

Share Document