Simulation Optimization of Multi-Objective Flexible Job Shop Scheduling

2013 ◽  
Vol 365-366 ◽  
pp. 602-605
Author(s):  
Gui Cong Wang ◽  
Chuan Peng Li ◽  
Huan Yong Cui

Current scheduling approach for multiple objective flexible job shop problem (FJSP) cannot construct a precise scheduling model and obtain a satisfactory scheduling result at the same time. To deal with this problem, a simulation optimization scheduling approach was presented which was composed of two basic modules: the Fast non-dominated Sorting Genetic Algorithm (NSGA-II) module and Witness simulation module. Firstly, a multi-objective mathematical model was found for FJSP and NSGA-II was applied to solve. Then, a set of Pareto optimal solution was obtained by NSGA-II module. In order to select the final solution from the Pareto optimal solution for FJSP, the simulation model was set up by Witness, every Pareto solution was as input for simulation model. Finally, the final solution can be selected according other performance indicators.

Author(s):  
Yaoyao Han ◽  
Xiaohui Chen ◽  
Minmin Xu ◽  
Youjun An ◽  
Fengshou Gu ◽  
...  

With the development of Industry 4.0 and requirement of smart factory, cellular manufacturing system (CMS) has been widely concerned in recent years, which may leads to reducing production cost and wip inventory due to its flexibility production with groups. Intercellular transportation consumption, sequence-dependent setup times, and batch issue in CMS are taken into consideration simultaneously in this paper. Afterwards, a multi-objective flexible job-shop cell scheduling problem (FJSCP) optimization model is established to minimize makespan, total energy consumption, and total costs. Additionally, an improved non-dominated sorting genetic algorithm is adopted to solve the problem. Meanwhile, for improving local search ability, hybrid variable neighborhood (HVNS) is adopted in selection, crossover, and mutation operations to further improve algorithm performance. Finally, the validity of proposed algorithm is demonstrated by datasets of benchmark scheduling instances from literature. The statistical result illustrates that improved method has a better or an equivalent performance when compared with some heuristic algorithms with similar types of instances. Besides, it is also compared with one type scalarization method, the proposed algorithm exhibits better performance based on hypervolume analysis under different instances.


2010 ◽  
Vol 29-32 ◽  
pp. 2496-2502
Author(s):  
Min Wang ◽  
Jun Tang

The number of base station location impact the network quality of service. A new method is proposed based on immune genetic algorithm for site selection. The mathematical model of multi-objective optimization problem for base station selection and the realization of the process were given. The use of antibody concentration selection ensures the diversity of the antibody and avoiding the premature convergence, and the use of memory cells to store Pareto optimal solution of each generation. A exclusion algorithm of neighboring memory cells on the updating and deleting to ensure that the Pareto optimal solution set of the distribution. The experiments results show that the algorithm can effectively find a number of possible base station and provide a solution for the practical engineering application.


Transportation problem is a very common problem for a businessman. Every businessman wants to reduce cost, time and distance of transportation. There are several methods available to solve the transportation problem with single objective but transportation problems are not always with single objective. To solve transportation problem with more than one objective is a typical task. In this paper we explored a new method to solve multi criteria transportation problem named as Geometric mean method to Solve Multi-objective Transportation Problem Under Fuzzy Environment. We took a problem of transportation with three objectives cost, time and distance. We converted objectives into membership values by using a membership function and then geometric mean of membership values is taken. We also used a procedure to find a pareto optimal solution. Our method gives the better values of objectives than other methods. Two numerical examples are given to illustrate the method comparison with some existing methods is also made.


Sign in / Sign up

Export Citation Format

Share Document