Robot-Forming - An Incremental Forming Process Using an Industrial Robot by Means of DELMIA Software Package

2013 ◽  
Vol 371 ◽  
pp. 416-420 ◽  
Author(s):  
Ionut Chera ◽  
Octavian Bologa ◽  
Sever Gabriel Racz ◽  
Radu Eugen Breaz

The purpose of this research is to present an alternative method for manufacturing sheet metal parts using an asymmetric incremental forming process by means of an industrial robot. This method is based on designing, simulating and generating the toolpath for the tool attached to the robot using DELMIA software package. The proposed approach allows users to check for system collisions, robot joins limitations and singularity problems. After a comprehensive simulation of the movements of the robot is performed, the program code can be generated by means of a specific DELMIA function. The program can be used afterwards to control the robot during the experimental work. In order to demonstrate the capabilities of robot-forming, a truncated pyramid sheet metal part was manufactured using a custom made stand and with the help of a KUKA KR6 anthropomorphic robot.

2014 ◽  
Vol 555 ◽  
pp. 300-305
Author(s):  
Ionut Chera ◽  
Octavian Bologa ◽  
Gabriel Racz ◽  
Radu Breaz

This paper aims to provide results regarding the measurement of the strains in the material of sheet metal parts which have been incrementally formed. The incremental forming of the steel sheets has been performed with the aid of a KUKA KR 6 industrial robot on a specially constructed stand, and the measurement of the strains has been done using ARAMIS optical measurement system. The trajectory of the forming punch which is attached to the robot was designed using CATIA V5 and the movements of the robot were designed and simulated in DELMIA software. DELMIA generated the program code needed for the robot to execute the desired movements in order to form the sheet metal parts.


2019 ◽  
Vol 25 (3) ◽  
Author(s):  
CATALINA CIOFU ◽  
BOGDAN CHIRITA ◽  
ROXANA LUPU ◽  
COSMIN GRIGORAS ◽  
CRINA RADU ◽  
...  

Stretch forming of sheet metal materials is a highly required process in aerospace industry for manufacturing skin parts. Automation of some processes such as cutting, punching, forming, shearing and nesting in conventional manufacturing tends to combine these forming methods. Some researches are made on the formability of sheet metal materials obtained in incremental forming process with stretch forming and water jet incremental micro-forming with supporting dies. This paper is an attempt to review the newly researches made on optimization of manufacturing metal skin parts to achieve geometrical accuracy.


2019 ◽  
Vol 25 (3) ◽  
pp. 15-21
Author(s):  
CATALINA CIOFU ◽  
BOGDAN CHIRITA ◽  
ROXANA LUPU ◽  
COSMIN GRIGORAS ◽  
CRINA RADU ◽  
...  

Stretch forming of sheet metal materials is a highly required process in aerospace industry for manufacturing skin parts. Automation of some processes such as cutting, punching, forming, shearing and nesting in conventional manufacturing tends to combine these forming methods. Some researches are made on the formability of sheet metal materials obtained in incremental forming process with stretch forming and water jet incremental micro-forming with supporting dies. This paper is an attempt to review the newly researches made on optimization of manufacturing metal skin parts to achieve geometrical accuracy.


2019 ◽  
Vol 957 ◽  
pp. 120-129
Author(s):  
Melania Tera ◽  
Cristina Maria Biris

Deep-drawing is an industrial forming process which allows the user to process large batches of sheet metals parts. One of the major drawbacks of this process is the complexity and the high cost of dies. In comparison incremental forming is a flexible process, allowing the user to obtain sheet metal parts without the need of using a die. The present paper aims to present a comparative study of the two forming processes by presenting the main advantages and drawbacks of each one. The comparative study, aimed on the industrial implementation of the incremental forming process requires a comparison of the two processes regarding the environmental impact. Thus, the results of the study will justify the selection of the incremental forming process in the case of small batches sheet metal parts in conditions of minimal impact on the environment.


2007 ◽  
Author(s):  
Shigekazu Tanaka ◽  
Tamotsu Nakamura ◽  
Kunio Hayakawa ◽  
Hideo Nakamura ◽  
Kazuo Motomura

2014 ◽  
Vol 599-601 ◽  
pp. 413-416 ◽  
Author(s):  
Hu Zhu ◽  
Jin Ju ◽  
Yi Bo Liu

For the purpose of the fabrication of the sheet-metal parts with non-horizontal end face using the sheet metal CNC incremental forming technology, two kinds of path generating methods, namely the level path perpendicular to Z axis method and the equidistant path parallel to sheet metal are proposed in this paper. Both of the paths are generated by Visual C++ and OpenGL graphics library, the effect of the two kinds of forming paths to the forming quality of the sheet part with non-horizontal end face is researched using the finite element analysis method in this paper.


2013 ◽  
Vol 798-799 ◽  
pp. 267-271
Author(s):  
Ren Jun Li ◽  
Ming Zhe Li ◽  
Zhong Yi Cai

Surface flexible rolling method, using two integral working rolls as the forming tool, can achieve fast, flexible and continuous manufacturing of three-dimensional sheet metal parts. This paper introduces the basic principle of surface flexible rolling and discusses the numerical simulation results when the working rolls are bended as circular arcs. The stability indicates the forming effect to some extent and the flow type of the metal can be deduced from stability analysis. To integrate and analyze the simulation results by means of reverse engineering. The analysis results show that the forming process is stable and the effect of surface flexible rolling is fine. It also indicates that inhomogeneous deformation and accumulation occurs during the process. The numerical simulation and experimental results demonstrate that the surface flexible rolling is a feasible and effective way to form three-dimensional sheet metal parts.


Sign in / Sign up

Export Citation Format

Share Document