Stress Intensity Factor of Different Position Plates with Eccentric Crack

2013 ◽  
Vol 376 ◽  
pp. 173-176
Author(s):  
Ming Ming Wang ◽  
Ming Yan ◽  
Xiang Jun Zhu

Aim for calculating stress intensity factor (short for SIF) of different position plates with eccentric crack, and the change tendency between different positions and SIF, the crack model is built by finite element software, and the SIF change tendency line with different width plates is got. It is seen from the von Mises stress cloud chart of ANSYS that the deformation of plate is effected by crack; as the center of crack is gradually close to the edge of plate, SIF is increasing. When the distance between the center and edge of crack is decreasing down to 3/8, SIF is increasing fiercely, that means, the plate at this time has already reached the edge of fracture. If continue loading the stretch, the crack will be apparent on the plate. And the curvature equation is got by index decay adapting.

2013 ◽  
Vol 415 ◽  
pp. 602-605
Author(s):  
Ming Ming Wang ◽  
Ming Yan ◽  
Xiang Jun Zhu

Aim for calculating stress intensity factor (short for SIF) of different width plates with edge crack, and the change tendency between different widths and SIF, the crack model is built by finite element software, and the SIF change tendency line with different width plates is got. It is seen from the von Mises stress cloud chart of ANSYS that the deformation of plate is effected by crack; as the decreasing of width, SIF is increasing. When the width of plate is down to 3/8, SIF is increasing fiercely, that means, the plate at this time has already reached the edge of fracture. If continue loading the stretch, the crack will be apparent on the plate. And the curvature equation is got by index decay adapting.


2021 ◽  
Vol 16 (59) ◽  
pp. 471-485
Author(s):  
Ehab Samir Mohamed Mohamed Soliman

Presence of cracks in mechanical components needs much attention, where the stress field is affected by cracks and the propagation of cracks may be occurred causing the damage. The objective of this paper is to present an investigation of crack type effect on crack severity in a finite plate. Three cases of cracked plate with three different types of cracks are assumed in this work, i.e., single edge crack, center crack and double edge crack. 2D numerical models of cases of cracked plate are established in finite element analysis (FEA), ANSYS software by adopting PLANE 183 element. Values of FEA mode I stress intensity factor SIF and Von-Mises stress at crack apex are determined for cases of cracked plate under tensile stress with different values. To identify the crack severity, the comparison of FEA results for different cracked cases is made. The comparison showed that, single edge cracked plate (SECP) has the maximum values of mode I SIF and Von-Mises stress at crack apex, i.e. the greatest crack severity is considered. Also, values of FEA Von-Mises stress at crack apex for center cracked plate (CCP) are moderate and for double edge cracked plate (DECP) are the minimum. Besides, in case of high crack lengths, it is found that, FEA results of mode I SIF in case of (CCP) are higher than those of in case of (DECP). Consequently, crack severity is considered as moderate in case of (CCP) and the minimum in case of (DECP). Empirical formulas are used to approximately estimate mode I SIF for all the case studies of cracked plate in this study and the results are compared to those of FEA. A good agreement between analytical and FEA results has been showed by this comparison.


Author(s):  
D. J. Shim ◽  
S. Tang ◽  
T. J. Kim ◽  
N. S. Huh

Stress intensity factor solutions are readily available for flaws found in pipe to pipe welds or shell to shell welds (i.e., circumferential/axial crack in cylinder). In some situations, flaws can be detected in locations where an appropriate crack model is not readily available. For instance, there are no practical stress intensity factor solutions for circular-arc cracks which can form in circular welds (e.g., nozzle to vessel shell welds and storage cask closure welds). In this paper, stress intensity factors for circular-arc cracks in finite plates were calculated using finite element analysis. As a first step, stress intensity factors for circular-arc through-wall crack under uniform tension and crack face pressure were calculated. These results were compared with the analytical solutions which showed reasonable agreement. Then, stress intensity factors were calculated for circular-arc semi-elliptical surface cracks under the lateral and crack face pressure loading conditions. Lastly, to investigate the applicability of straight crack solutions for circular-arc cracks, stress intensity factors for circular-arc and straight cracks (both through-wall and surface cracks) were compared.


2011 ◽  
Vol 308-310 ◽  
pp. 224-227
Author(s):  
Jun Ru Yang ◽  
Gong Ling Chen ◽  
Li Li Zhang

Taking the cladding material structure with double interface cracks parallel to and lying on the interface as the study object, based on the theoretical study on the crack tip stress intensity factor(SIF), using the finite element software ANSYS, the SIFs are researched by changing the crack space, crack length, thickness ratio, load and crack location. The results show that, the crack SIFs increase firstly and then decrease with the crack space increase, increase with the increases of the crack length and the load, decrease a little with the thickness ratio increase, decrease firstly and then increase with the increase of distance between the crack and the boundary.


2013 ◽  
Vol 577-578 ◽  
pp. 213-216
Author(s):  
S. Fiordalisi ◽  
C. Gardin ◽  
C. Sarrazin-Baudoux ◽  
M. Arzaghi ◽  
Jean Petit

The simultaneous effect of crack length and crack front shape on plasticity-induced crack closure (PICC) for a 304L austenitic stainless steel is simulated through 3D numerical modelling using finite element software Abaqus for through-thickness cracks with different curved crack fronts in CT specimens in comparison with bidimensional through crack with a straight front. The influence of possible loading history effect is avoided by applying constant K amplitude. The local stress intensity factor range for crack opening Kopis evaluated from the simulation of the loss of the last local contact between the crack lips near the crack tip. The pertinence of the different crack front shapes is discussed in term of the effective stress intensity factor range Keffand in comparison with the experimental crack front observations.


Author(s):  
J. Zhao ◽  
H. A. DeSmidt ◽  
M. Peng ◽  
W. Yao

The study is based on the finite element model which was developed to investigate the nonlinear breathing behavior of transverse cracks in terms of crack location and rotation speed. The crack model is built using the released strain energy concept in fracture mechanics. Zero Stress Intensity Factor (SIF) method is employed to determine the crack closure line at each time step by calculating the stress intensity factor of opening mode for prescribed resolutions in crack area. The crack is considered open at the points where the stress intensity factor for opening mode is larger than zero. The stiffness matrix is updated at every time step by integrating compliant coefficients over instantly calculated crack open area. With the updated stiffness and force matrices, the vibration response at next time step is solved by Newmark integration method. To investigate the effectiveness of laser scanner, parametric study is conducted to analyze the vibration responses collected by the laser scanner with different scanning functions and frequencies. With this model, the displacement or velocity along the shaft can be extracted to form time based data sets for different scanning function or scanning frequency to explore its usefulness for damage identification.


2010 ◽  
Vol 452-453 ◽  
pp. 493-496
Author(s):  
You Tang Li ◽  
Bo Chen ◽  
Rui Feng Wang

Based on elasticity theory, the stress field and stress intensity factor of gear crack are discussed. The effect of friction coefficient and crack shape on equivalent stress, displacement at crack tip and stress intensity factor were analyzed by using general finite element software ANSYS, and the formula of stress intensity factor of gear crack was revised. The results showed that the equivalent stress, displacement at crack tip and stress intensity factor increased with the friction coefficient for the same crack. For the same f and different a/c, the front friction surface played a major role when a/B﹤0.05, and the post friction surface played a major role when a/B﹥0.05. The stress intensity factor increase at first, and then decrease with the increase of a/c.


2012 ◽  
Vol 446-449 ◽  
pp. 3311-3317
Author(s):  
Han Qing Liu ◽  
Gui Xian Wu

In the design of the asphalt pavement or asphalt overlay, consider about the viscoelastic fracture mechanics behavior of asphalt mixture is significant in researching the asphalt pavement craze or the extending behavior of reflective crack. This paper employs nonlinear finite element software ABAQUS to analysis about the viscoelastic of asphalt mixture in the basis of the vicoelastic breaking theory, analyze the Traffic dynamic loading different speeds, different grassroots modulus to contain crack pavement structure system of the displacement field and stress field of influence.The calculation results show that the curve of the stress intensity factor in the crack tip moves as the increase of the speed, but the maximum is virtually unchanged; and it is proportional to the grassroots modulus variations, that is the stress intensity factor increases as the increase of grassroots modulus. With the effect of partial load, the stress intensity factor is formed by KⅠ、KⅡ. It is mainly assumed by KⅡ when grassroots modulus is low, and as the grassroots modulus increases, the KⅠ is increases, But KⅡ changes little.


Sign in / Sign up

Export Citation Format

Share Document