A New Prediction Method for Chaotic Time Series

2013 ◽  
Vol 380-384 ◽  
pp. 1673-1676
Author(s):  
Juan Du

In order to show the time cumulative effect in the process for the time series prediction, the process neural network is taken. The training algorithm of modified particle swarm is used to the model for the learning speed. The training data is sunspot data from 1700 to 2007. Simulation result shows that the prediction model and algorithm has faster training speed and prediction accuracy than the artificial neural network.

2020 ◽  
Vol 29 (07n08) ◽  
pp. 2040010
Author(s):  
Shao-Pei Ji ◽  
Yu-Long Meng ◽  
Liang Yan ◽  
Gui-Shan Dong ◽  
Dong Liu

Time series data from real problems have nonlinear, non-smooth, and multi-scale composite characteristics. This paper first proposes a gated recurrent unit-correction (GRU-corr) network model, which adds a correction layer to the GRU neural network. Then, a adaptive staged variation PSO (ASPSO) is proposed. Finally, to overcome the drawbacks of the imprecise selection of the GRU-corr network parameters and obtain the high-precision global optimization of network parameters, weight parameters and the hidden nodes number of GRU-corr is optimized by ASPSO, and a time series prediction model (ASPSO-GRU-corr) is proposed based on the GRU-corr optimized by ASPSO. In the experiment, a comparative analysis of the optimization performance of ASPSO on a benchmark function was performed to verify its validity, and then the ASPSO-GRU-corr model is used to predict the ship motion cross-sway angle data. The results show that, ASPSO has better optimization performance and convergence speed compared with other algorithms, while the ASPSO-GRU-corr has higher generalization performance and lower architecture complexity. The ASPSO-GRU-corr can reveal the intrinsic multi-scale composite features of the time series, which is a reliable nonlinear and non-steady time series prediction method.


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1260
Author(s):  
Zhaolin Yuan ◽  
Jinlong Hu ◽  
Di Wu ◽  
Xiaojuan Ban

This paper focuses on the time series prediction problem for underflow concentration of deep cone thickener. It is commonly used in the industrial sedimentation process. In this paper, we introduce a dual attention neural network method to model both spatial and temporal features of the data collected from multiple sensors in the thickener to predict underflow concentration. The concentration is the key factor for future mining process. This model includes encoder and decoder. Their function is to capture spatial and temporal importance separately from input data, and output more accurate prediction. We also consider the domain knowledge in modeling process. Several supplementary constructed features are examined to enhance the final prediction accuracy in addition to the raw data from sensors. To test the feasibility and efficiency of this method, we select an industrial case based on Industrial Internet of Things (IIoT). This Tailings Thickener is from FLSmidth with multiple sensors. The comparative results support this method has favorable prediction accuracy, which is more than 10% lower than other time series prediction models in some common error indices. We also try to interpret our method with additional ablation experiments for different features and attention mechanisms. By employing mean absolute error index to evaluate the models, experimental result reports that enhanced features and dual-attention modules reduce error of fitting ~5% and ~11%, respectively.


2020 ◽  
Vol 52 (2) ◽  
pp. 1485-1500
Author(s):  
Jiaojiao Hu ◽  
Xiaofeng Wang ◽  
Ying Zhang ◽  
Depeng Zhang ◽  
Meng Zhang ◽  
...  

2010 ◽  
Vol 40-41 ◽  
pp. 930-936 ◽  
Author(s):  
Cong Gui Yuan ◽  
Xin Zheng Zhang ◽  
Shu Qiong Xu

A nonlinear correlative time series prediction method is presented in this paper.It is based on the mutual information of time series and orthogonal polynomial basis neural network. Inputs of network are selected by mutual information, and orthogonal polynomial basis is used as active function.The network is trained by an error iterative learning algorithm.This proposed method for nonlinear time series is tested using two well known time series prediction problems:Gas furnace data time series and Mackey-Glass time series.


Author(s):  
Rebecca Pontes Salles ◽  
Eduardo Ogasawara ◽  
Pedro González

The prediction of time series has gained increasingly more attention among researchers since it is a crucial aspect of decision-making activities. Unfortunately, most time series prediction methods assume the property of stationarity, i.e., statistical properties do not change over time. In practice, it is the exception and not the rule in most real datasets. Several transformation methods were designed to treat nonstationarity in time series. In this context, nonstationary time series prediction is challenging since it demands knowledge of both data transformation and prediction methods. Since there are no silver bullets, it leads to exploring a large number of data transformation and prediction method combinations for building prediction setups. However, selecting a prediction setup that is appropriate to a particular time series and application is not a simple task. Benchmarking of different candidate combinations helps this selection. This work contributes by providing a review and experimental analysis of transformation methods and a systematic framework (TSPred) for benchmarking and selecting prediction setups for nonstationary time series. Suitable nonstationary time series transformation methods provided improvements of more than 30% in prediction accuracy for half of the evaluated time series. They improved the prediction by more than 95% for 10% of the time series. The features provided by TSPred are also shown to be competitive regarding prediction accuracy. Furthermore, the adoption of a validation phase during model training enables the selection of suitable transformation methods.


Electronics ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 876 ◽  
Author(s):  
Renzhuo Wan ◽  
Shuping Mei ◽  
Jun Wang ◽  
Min Liu ◽  
Fan Yang

Multivariable time series prediction has been widely studied in power energy, aerology, meteorology, finance, transportation, etc. Traditional modeling methods have complex patterns and are inefficient to capture long-term multivariate dependencies of data for desired forecasting accuracy. To address such concerns, various deep learning models based on Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN) methods are proposed. To improve the prediction accuracy and minimize the multivariate time series data dependence for aperiodic data, in this article, Beijing PM2.5 and ISO-NE Dataset are analyzed by a novel Multivariate Temporal Convolution Network (M-TCN) model. In this model, multi-variable time series prediction is constructed as a sequence-to-sequence scenario for non-periodic datasets. The multichannel residual blocks in parallel with asymmetric structure based on deep convolution neural network is proposed. The results are compared with rich competitive algorithms of long short term memory (LSTM), convolutional LSTM (ConvLSTM), Temporal Convolution Network (TCN) and Multivariate Attention LSTM-FCN (MALSTM-FCN), which indicate significant improvement of prediction accuracy, robust and generalization of our model.


Sign in / Sign up

Export Citation Format

Share Document