New Wind Turbine High-Speed Shaft Design and Simulation of Hydraulic Shock Absorbers

2013 ◽  
Vol 397-400 ◽  
pp. 479-482 ◽  
Author(s):  
Li Wen Yan ◽  
Cun Jin Ai ◽  
Hui Xie

For wind turbine high-speed shaft vibration, this article proposes a hydraulic shock absorber design, and detailed describe the working principle and structure of the shock absorber. Use Amesim Software conduct vibration simulation ,confirm that the design is reasonable.

1974 ◽  
Vol 96 (1) ◽  
pp. 101-106 ◽  
Author(s):  
R. W. Mayne

Dimensionless differential equations are developed which model a hydraulic shock absorber. These equations are solved numerically to determine quantitatively the effects of fluid compressibility and series and parallel springs on the shock absorber operation. Both variable and constant orifice area are considered for a system protecting a mass during impact against a rigid wall. The results show that a finely tuned variable area shock absorber is degraded by the considered forms of compliance. Performance of the constant area shock absorber can be improved by including compliance and, with an appropriate parallel spring, the ideal flat deceleration profile can be obtained without variable orifice area.


Vestnik MEI ◽  
2021 ◽  
pp. 132-136
Author(s):  
Andrey A. Shilov ◽  
◽  
Aleksey N. Chernyaev ◽  

During nuclear power plant (NPP) operation, the reactor plant main equipment can show displacements when subjected to the effect of various external and internal loads. These displacements are mainly caused by thermal expansion of the metal and seismic loads. To cope with these phenomena, the reactor plant components that are most susceptible to these types of loads are fastened with hydraulic shock absorbers (HSAs) to limit their displacements under the effect of seismic or accident dynamic loads, as well as to ensure thermal displacements in increasing or decreasing the power unit output. For monitoring the HSA operation and indirectly monitoring the displacements of the reactor plant equipment items fastened with hydraulic shock absorbers, the dedicated hydraulic shock absorber monitoring system (HSAMS) is used, which is equipped with linear displacement sensors installed directly on the HSAs. If the displacements go beyond the predetermined limits, the HSAMs algorithms produce an appropriate alarm. The information from the HSAMS is also used by the automated residual lifetime monitoring system (ARLMS) to calculate the steam generator connection pipe displacement criteria parameters. However, during the operation of a number of NPP power units, a problem associated with numerous failures of the HSAMS linear displacement sensors has been faced. These failures manifested themselves in that the sensor signals went beyond the valid range or frozen under the effect of external influencing factors. As a result, the HSAMS and ARLMS operation was complicated by a large number of unreliable measurements and the functions of these systems were not performed in a proper way. To solve this problem, it has been proposed to use an algorithm for tracking signal changes, which can improve the credibility of HSAMS indications by determining unreliable data in the online mode and by performing statistical processing of the already available array of indications.


Author(s):  
Paul T. Semones ◽  
David A. Renfroe

Tire tread separations on light trucks and SUVs have resulted in numerous catastrophic highway accidents over the past two decades in the United States. These accidents frequently involve single-vehicle rollovers or deviations of the impaired vehicle into oncoming traffic, where high speed frontal collisions may ensue. On light trucks and SUVs equipped with a Hotchkiss rear suspension, one explanation for the loss of driver control during an in-process rear tire tread separation is solid axle tramp response to the imbalanced separating tire. This explanation has met with some controversy. The present study will demonstrate that the imbalance forces generated at highway speeds from a partially detreaded tire are sufficient to induce continuous cyclical axle tramp, and can even be sufficient to completely elevate rear-axle tires out of contact with the paved roadway. This imbalance-induced tramping action may be exacerbated during braking and the vehicle’s terminal yaw, when rear traction is crucial to avoiding a catastrophic accident. In addition to test data, several field examples of such events are presented. A key metric of solid axle response to an imbalanced, partially detreaded tire is shock absorber motion. In the present study, shock absorber displacement on the test vehicles, as measured during highway speed tread separation axle tramp events, is found to oscillate through a stroke generally less than one inch (2.5 cm) in length at a frequency in excess of 10 Hz. Peak instantaneous velocities of the shock absorber have been observed as high as 40 in/s (16 cm/s) or more during straight driving under axle tramp conditions. Confirming several previously published findings, the present study shows that increasing shock damping force at the higher operational velocities of the shock absorber reduces the magnitude of axle tramp and assists in keeping the rear axle tires in contact with the ground. Additionally, increasing the distance between the shock absorbers by moving them closer to the wheels provides the same advantage.


Energies ◽  
2016 ◽  
Vol 9 (5) ◽  
pp. 386 ◽  
Author(s):  
Ruichen Wang ◽  
Fengshou Gu ◽  
Robert Cattley ◽  
Andrew Ball

2019 ◽  
Vol 43 (3) ◽  
pp. 101-124
Author(s):  
Vjekoslav Tvrdić ◽  
◽  
Srdjan Podrug ◽  
Damir Jelaska ◽  
Milan Perkušić ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document